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Lecture Note  Partial Differentiation 

Chapter 1 

 
Partial Differentiation 

 
1 Functions of Two or More Variables 
 Definition 

A function of two real variables, and x y  is a rule that assigns a unique real 
number ( ),f x y to each point ( ),x y in some set of the xy-plane.  D
A function of three variables, , , and x y z is a rule that assigns a unique real 
number ( ), ,f x y z to each point ( ), ,x y z in some set D of three-dimensional 
space.  
 

 The set D in these definitions is the domain of the function; it is the set of 
points at which the function is defined.  
 
In general, a function of n real variables, 1 2, , , nx x …

), n

x , is regarded as a rule that 
assigns a unique real number ( 1 2, ,f x x … x to each point ( )1 2, , , nx x x… in some set 
of n-dimensional space.  
Example 1 

( ) ( ) 2: , , 2f x y f x y x y=

1,3f

 is a function of 2 variables. If x=1 and y=3, then the 

value of the function is .  ( ) 22 1 3 6= ⋅ ⋅ =
 
Note  We can denote and we call z the dependent variable and  ( 1 2, ,..., nz f x x x= )

1 2, ,..., nx x x  the independent variables.  
 
For the function of two variables ( ),z f x y= , its domain is a set of point ( ),x y of the 

xy-plane, on which ( , )f x y is defined. The set of point ( )( )y, , ,P x y z f x= represents 

the graph of ( ),x yz f= . It is a surface in 3-space. 
 
Example 2   1

1

Fig.1 
1

State the domain of ( ) 2 2, 1z f x y x y= = − −  
Solution 

f  is defined if . Hence the 
domain of f is the points on the disc with radius of unity. (Fig. 1) 

2 2 2 21 0x y x y− − ≥ ⇔ + ≤1

 
  
Example 3  

 Find the domain of ( )
2 2

1,
1 1

z f x y
x y

= =
− ⋅ −

 

Solution 

1−

1

1−

 1

1

Fig. 2 
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 z is defined if
2

2

11 0
11 0

xx
yy

⎧ <⎧ − >⎪ ⎪⇒⎨ ⎨
<− >⎪ ⎪⎩ ⎩

. Hence the domain is the set of points 

inside of the rectangle. (See fig. 2) 
 Level Curves 
 Each horizontal plane z = C intersects the surface ( ),z f x y= in a curve. The 
projection of this curve on xy-plane is called a level curve.  
 
 
 
 
 
 
 
 
 
 
 
 
2 Limits and Continuity 

The surface ( ),z f x y=  

z c=  Plane

The level curve 

Limit of a Function of Two Variables 
The limit statement  
 

( ) ( )
( )

0 0, ,
lim ,

x y x y
f x y L

→
=  

0y

0x x

y

δ
means that for each given number 0ε > , there exists a 
number 0δ > so that whenever ( ),x y is a point in the 
domain D of  f such that  

 ( ) ( )2 2
0 00 x x y y δ< − + − <  

then  
 ( ),f x y L ε− <  

or 
 

( ) ( )
( ) ( ) ( ) ( )

( )
0 0

2 2
0 0, ,

lim , 0, 0 : , ,0

,

x y x y
f x y L x y D x x y y

f x y L

ε δ δ

ε

→
= ⇔∀ > ∃ > ∀ ∈ < − + − <

⇒ − <
 

 
 N.b: If the 

( ) ( )
(

0 0, ,
lim ,

x y x y
)f x y

→
is not the same for all approaches or paths within 

the domain of f then the limit does not exist.  
Example 1  

 Evaluate 
( ) ( )

2

, 0,0
lim

x y

x x xy y
x y→

+ − −
−

 

Solution  

For x y≠ ( ) ( )( )2

, 1
x y x yx x xy yf x y x

x y x y
+ −+ − −

= = =
− −

+  

 2
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( ) ( )
( )

( ) ( )
( )

, 0,0 , 0,0
lim , lim 1 1

x y x y
f x y x

→ →
= + =  

 
Example 2  

If ( ) 2

2, 2

xyf x y
x y

=
+

, show that 
( ) ( )

( )
, 0,0
lim ,

x y
f x y

→
doesn’t exist by evaluating this limit 

along the x-axis, the y-axis, and along the line y x= .  
Solution 
First note that the denominator is zero at ( )0,0 , so ( )0,0f is not defined. If we 
approach the origin along the x-axis (where 0y = ), we find that 

  ( ) ( )
2

2 0
,0 0

0
x

f x
x

= =
+

 

So as ( ), 0f x y → ( ) (, 0,x y → )0 along 0y =  (and 0x ≠ ). If we approach the origin 
along the y-axis (where ), we find that  0x =

  ( ) ( )
2

2 0
,0 0

0
y

f x
y

= =
+

 

So as ( ), 0f x y → ( ) (, 0,x y → )0 along 0x = (and 0y ≠ ).  
 
However, along the line y x= , the functional values are 

  ( ) ( )
2

2 2

2, , 1 forxf x y f x x x
x x

= = =
+

 0≠  

so as ( ), 1f x y → ( ) (, 0,x y → )0 along y x= . Because ( ),f x y tends toward different 

numbers as along the different paths, it follows that f has no limit at the 

origin
( ) ( ), 0,0→x y

( )0,0 .  
 
Example 3  
Assuming each limit exists, evaluate: 

 a. 
( ) ( )

( )2

, 3, 4
lim

x y

2x xy y
→ −

+ + (ans: 13) b.
( ) ( ) 2, 1,2

2lim
x y 2

xy
x y→ +

(ans: 4
5

) 

  
Continuity of a Function of Two Variables 

 The function ( , )f x y is continuous at the point ( )0 0,x y if 

 (i). ( 0 0, )f x y is defined.  

 (ii). 
( ) ( )

(
0 0, ,

lim ,
x y x y

)f x y
→

exists. 

(iii).
( ) ( )

( ) ( )
0 0

0 0, ,
lim , ,

x y x y
f x y f x y

→
=  

The function f is continuous on a set S if it is continuous at each point in S.  
 

Limit and Continuity for function of three variables 
The limit statement 

   
( ) ( )

( )
0 0 0, , , ,

lim , ,
x y z x y z

f x y z L
→

=   

 3
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means that for each 0, 0ε δ> ∃ > such that ( ), ,f x y z L ε− < whenever 

( , , )f x y z is a point in the domain of f such that  

( ) ( ) ( )2 2 2
0 0 00 x x y y z z δ< − + − + − <  

The function ( , , )f x y z is continuous at the point ( )0 0 0 0, ,P x y z if  

(i). ( )0 0 0, ,f x y z  

(ii). 
( ) ( )

( )
0 0 0, , , ,

lim , ,
x y z x y z

f x y z
→

 

(iii).
( ) ( )

( ) ( )
0 0 0

0 0 0, , , ,
lim , , , ,

x y z x y z
f x y z f x y z

→
=  

 
 

3  Partial Derivatives  
If then the partial derivatives of f with respect to x and y are the function ( ,z f x y= )

xf and yf , respectively defined by  

 
( ) ( ) ( )

( ) ( ) ( )
0

0

, ,
, lim

, ,
, lim

x x

y y

f x x y f x y
f x y

x
f x y y f x y

f x y
y

Δ →

Δ →

+ Δ −
=

Δ
+ Δ −

=
Δ

 

provided the limits exist.  
 
Example 1  
( ) 3 2, 2f x y x y x y= + . Find ,x yf f  

Solution  

  
( )
( )

2 2

3 2

, 3 2

, 2
x

y

f x y x y xy

f x y x x y

= +

= +
 

 
 Alternative Notations for Partial Derivatives 
 For , the partial derivatives ( ,z f x y= ) ,x yf f are denoted by  

  
( ) ( ) (

( )

)

( ) (

, ,

, ,

x x

y y

f z

)

x

y

f x y f x y z D f
x x x
f zf x y f x y z D f
y y y

∂ ∂ ∂
= = = = =
∂ ∂ ∂
∂ ∂ ∂

= = = = =
∂ ∂ ∂

 

The values of the partial derivatives of ( ),f x y at the point ( ),a b are denoted 

by 
( )

(
,

,x
a b

f )f a b
x
∂

=
∂

 and 
( )

( ),
,

y
a b

f f a b
y
∂

=
∂

)3

 

 
Example 2 

Let . Evaluate (2 sin 3z x x y= +
( )3,0

z
x π

∂
∂

 

Solution  

 4
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( ) ( )( )

( ) ( )

3 2 3

3 2 3

2 sin 3 cos 3 3

2 sin 3 3 cos 3

z x x y x x y
x

x x y x x y

∂
= + + +

∂
= + + +

 

 Thus,  

  ( )

( ) ( )

2

3,0

2 2

2 sin 3 cos
3 3

2 0 1
3 3 3

z
x π

π ππ π

π π π

∂ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

= + − = −

 

Example 3 
 Let ( ) 2 2, , 2 3f x y z x xy yz= + + . Determine: ,x yf f and fz . 
Solution  
  We treat y, z as constants, then ( ) 2, , 2 2xf x y z x y= +  

  We treat x, z as constants, then ( ) 3, , 4yf x y z xy z= +  

  We treat x, y as constants, then ( ) 2, , 3zf x y z yz=  
Example  3 
Let z be defined implicitly as a function of x and y by the equation 2 3x z yz x+ =  
Determine z x∂ ∂ and z y∂ ∂  
 
Solution  
 Differentiate implicitly with respect to x, treating y as a constant: 

2 22 3z zxz x yz
x x

1∂ ∂
+ + =

∂ ∂
 

 Then solve this equation for z x∂ ∂ : 

2 2

1 2
3

z xz
x x yz
∂ −

=
∂ +

 

 Similarly, holding x constant and differentiating implicitly with respect to y, 
we find  

2 3 23 0z zx z yz
y y
∂ ∂

+ + =
∂ ∂

 

 So that  
3

2 23
z z
y x yz
∂ −

=
∂ +

 

 
Partial Derivative as a slope 
The line parallel to the xz-plane and tangent to the surface at the 

point has slope
( ,z f x y= )

) )(0 0 0 0, ,P x y z ( 0 0,xf x y . Likewise, the tangent line to the surface at 

that parallel to the yz-plane has slope0P ( )0 0,yf x y .  
 

Example 4 
Find the slope of the line that is parallel to the xz-plane and tangent to the surface 

z x x y= + at the point ( )1,3, 2P  
Solution  

 5
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If ( ) ( )1 2,f x y x x y x x y= + = + then the required slope is  ( )1,3xf

( ),
2x

xf x y x y
x y

= +
+

+ . Thus, ( ) 91,3
4xf =  

 
 

Higher-Order Partial Derivatives 
 Given , then ( ,z f x y= )

Second –order partial derivatives 

 ( )
2

2 x xxx

f f f f
x x x

∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

  ( )
2

2 y yy

f f
yf f

y y y
⎛ ⎞∂ ∂ ∂

= = =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

 Mixed second-order partial derivatives  

  
( )

( )

2

2

y yx x

x xyy

f f f f
x y x y

f f f f
y x y x

⎛ ⎞∂ ∂ ∂
= = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

Note  The notation xyf means that we differentiate first with respect to x and then 

with respect to y, while 
2 f
x y
∂
∂ ∂

3

means just the opposite (differentiate with respect to y 

first and then  
with respect to x).   
 
Example 5 
For , determine these higher-order partial derivatives.  ( ) 2, 5 2 3z f x y x xy y= = − +

 a. 
2 f
x y
∂
∂ ∂

 b. 
2 f
y x
∂
∂ ∂

 c. 
2

2

z
x
∂
∂

  d. ( )3, 2xyf  

Solution  
 a. First differentiate with respect to y, then to x 

  22 9f x y
y
∂

= − +
∂

 

  ( )
2

22 9f f x y
x y x y x

⎛ ⎞∂ ∂ ∂ ∂
= = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

2= −  

 b. Differentiate first with respect to x and then with respect to y.  

  10 2f x y
x
∂

= −
∂

 

  ( )
2

10 2 2f f x y
y x y x y
∂ ∂ ∂ ∂⎛ ⎞= = − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

−  

   
 c. Differentiate with respect to x twice:  

  ( )
2

2 10 2 10f f x y
x x x x

∂ ∂ ∂ ∂⎛ ⎞= = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
=  

 6
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 d. Evaluate the mixed partial found in part b at the point ( )3, 2  

  ( )3, 2 2xyf = − .  
 

Remark  If the function ( ),f x y has mixed second-order partial 

derivatives xyf and yxf  that are continuous in an open disk containing ( )0 0,x y , 
then 

  ( ) (0 0 0 0, ,yx xy )f x y f x y=  
 In fact this remark is a theorem with the proof omitted here.  
 
Example 6 
Determine , , ,xy yx xx xxyf f f f where ( ) 2, yf x y x ye=  
Solution 

We have the partial derivatives 
 2 y

xf xye=   2 2y y
yf x e x ye= +  

The mixed partial derivatives are 
 ( ) 2 2y y

xy x y
f f xe xy= = + e   2 2y y

yxf x e x ye= +  

 ( ) 2 y
xx x x

f f y= = e  and ( ) 2 2y y
xxy xx y

f f e= = + ye  

 
Example 7 
By direct calculation, show that xyz yzx zyxf f f= =  for the function 

( ) 2 2 4, ,f x y z xyz x y z= + . 

4 Directional Derivatives and Gradients 
4.1 Directional Derivatives and Gradients of Two-Variable Function 

Directional Derivative 
Let f be a function of two variables, and let 1 2u u i u j= + be a unit vector. The 
directional derivative of f at ( )000 , yxP in the direction of u is given by  

( ) ( ) ( )0 1 0 2 0 0
0 0 0

, ,
, limu h

f x hu y hu f x y
D f x y

h→

+ + −
=  

provided the limit exists.  
Let be a function that is differentiable at( yxf , ) ( )000 , yxP . Then has a 

directional derivative in the direction of the unit vector u u

f

2u1i j= +  given by 

( ) ( ) ( )0 0 0 0 1 0 0 2, , ,u x yD f x y f x y u f x y u= +  
Example 1 
Find the derivative of at the point ( ) 3223, yxyxf +−= ( )2,1P in the direction of the 

unit vector 1 3
2 2

ju i= −  

Solution 
 The partial derivative ( ) xyxf x 4, −= and ( ) 23, yyxf y = . Then since 

2
1

1 =u and 
2
3

2 −=u , we have  

 7
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( ) ( ) ( )1 31,2 1,2 1,2

2 2

2 6 3

u x yD f f f
⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − −

 

The Gradient 
Let be a differential function at f ( )yx, and let ( )yxf , have partial derivatives 

and . Then the gradient of , denoted by( yx, ) )f x ( yxf y , f f∇ , is a vector 
given by 

( ) ( ) ( ), , ,x yf x y f x y i f x y j∇ = +  
The value of the gradient at the point ( )000 , yxP is denoted by  

( ) ( )0 0 0 0 0, ,x yf f x y i f x y j∇ = +  
Example 2 
Find the gradient of the function ( ) 32, yyxyxf +=   
Solution  

 ( ) ( )2 3, 2xf x y x y y xy
x
∂

= + =
∂

 ( ) ( )2 3 2, 3y
2f x y x y y x y

y
∂

= + = +
∂

 

then 
( ) ( )2 2, 2 3f x y xyi x y j∇ = + +  

 Theorem:  
If f is a differentiable function of x and y, then the directional derivative of 
f at the point in the direction of the unit vector (0 0 0,P x y ) u  is  

  ( )0 0 0,uD f x y f u= ∇ ⋅  
 (The proof is consider an exercise) 
  
 
Example 3 
Find the directional derivative ( ) ( )2 3, lnf x y x y= + at the point ( )0 1, 3P − in the 

direction of .  2 3v i= − j
Solution 

  ( ) 2

2,x 3

xf x y
x y

=
+

, so ( ) 21, 3
26xf − = −  

  ( )
2

2

3,y
yf x y 3x y

=
+

, so ( ) 271, 3
26yf − = −  

 Thus, ( )0
2 271, 3

26 26
f f i∇ =∇ − = − − j  

 A unit vector in the direction of v  is  

 
( )

( )22

2 3 1 2 3
132 3

v i ju i
v

−
= = = −

+ −
j  

Thus  

 ( ) 0
2 2 27 3,

26 2613 13uD x y f u ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞= ∇ ⋅ = − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

4.2 Directional Derivatives and Gradients of Three-Variable Function 

 

 8
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 Directional Derivatives 
Let ( ), ,f x y z be a differentiable function at the point ( )0 0 0 0, ,P x y z

ive of f at the

, and let 

) in (u = be a unit vector. The directional derivat  point 0P
f u is given by 

1 2 3, ,u u u
the direction o

( ) ( ) ( ) ( )0 0 1 0 0 0 2 0 0 0 3, , , , ,y zy z u f x y z u f x y z u+ +  0 0 0 0, , ,u xD f x y z f x=
Gradient 

nt of the the function of three variable x, y, and z The gradie
( ) ( ) ( ), , , , , ,x y zf f x y z i f x y z j f x y z∇ = + + k  

( ), ,P x y z
is  

and, hence, at any point , the directional derivative of f in the 
dirction of a unit vector u

( ), ,uD f f x y z u= ∇ ⋅  
Example 4 

ctional derivative of ( ) 2 3, ,f x y z x y yz z= − +

2k

Find the dire at the point in the ( )1, 2,0−

direction of the vector 2a i j= + −
Solution 

. 

We can find  
( ) ( ) 2 2, , 2 , , , , 1 3x y z

2f x y z xy f x y z x z f yz= = − =  −
 Basic Properties of the gradient 
 Let f and g be differentiable functions. Then   
  Constant rule: 0c∇ =  for any constant c 

( )bg a f b g  Linearity rule : = ∇ + ∇  for constant a and b af∇ +

( )fg f g g  Product rule : f∇ = ∇ + ∇  

  Quotient rule : 2 , 0f g f f g g
g g

⎛ ⎞ ∇ − ∇
∇ = ≠⎜ ⎟
⎝ ⎠

 

  Power rule : ( ) 1n nf nf f−∇ = ∇  
  (The proof are considered exercises)  

ariable

    
 

 The Total Differential  5
, ( )y f x=

se, we ma

 For a function of one v , we defined the differential dy to be 

definition.  

Definition 
 fferential of the function 

( )d x dx′ . For the two-variable ca ke the following analogous 

 

y f=

( ),f x yThe total di is  

  ( ), ,f fdf dx dy f x y d y∂ ∂
= + = ( )x yx f x dy

x y
+

∂ ∂
 

x and dy are independent variables. Similarly, for a function of three 

  

where d
variables ( ), ,w f x y z=  the total differential is 

f f fdf dzdx dy
x y z
∂ ∂

= +
∂ ∂ ∂

∂
+  

 9
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Example  
Determine the tota unctions: 

a. 
l differential of the given f
( ) 3 4, , 2 5 6 b. ( ) ( )2 2, ln 3 2f x y x y x= −  f x y z x y z= + −     

Solution   
2 36 20 6f f f  a. df = +dx dy dz x dx y dy dz

x y z
∂ ∂ ∂

= + + −
∂ ∂ ∂

 

 for one independent parameter 
)

   
6 Chain Rules  
 The Chain rule

z  

x y  

u u  

x
z
∂
∂

y
z
∂
∂

dx
dt

dy
dt

Let ( ,f x y be a differentiable function of x and y, 

and let ( ) ( ) and x x t y y t= = to be differentiable 

functions of t. Then ( ),z f x y= is a differentiable 
function

 

 of t, and  

 dz z dx
dt x dt

∂
= +
∂

z dy
y dt
∂
∂

 

e , where

 
Example 1  

t 2 2z x y= + 21and x y t
t

= = . Compute dz
dt

L in two ways: 

by first expressing z explicitly in terms of t. b. by using the chain rule.  
tion 

 

a. 
Solu

a. By substituting 21  and x y t= = , we find that
t

  

 

 ( )
21⎛ ⎞ 22 2 2 2 4 for 0z x y t t t t

t
−= + = + = + ≠⎜ ⎟

⎝ ⎠
 

hus,T  3 32 4dz t t
dt

−= − +  

 b. Sine and2 2z x y= + 1 2,x t y t−= = , then 

  22 , 2 , , 2z z dx dyx y t t
x y dt
∂ ∂

dt
= = = − =  

eter: 
∂ ∂

z  

x y  

u v u  v

x
z
∂
∂

y
z
∂
∂

u
x
∂
∂

v
x
∂
∂

u
y
∂
∂

u
y
∂
∂

Use the chain rule for one independent param
 

( )( ) ( )2 32 2 2 2dz z dx z dy 34x t y t t
x dt y dt

− −∂ ∂
= + = − + = − +
∂ ∂

t  

 Extensions of the Chain Rule 
Suppose 

dt

( )yxfz ,= is differentiable at ( )yx, and that the partial derivatives of 
( )vuxx ,= and ( )vuyy ,= exist at ( )vu, . Then the composite 

function ) ( )vuyz ,,( vuxf ,[ ]= is differentiable at ( )vu, with   

 and z z x z z z y
u x x v y v

∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
 z y x

u y u v
∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

Example 2 
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Let , where Find 24 yxz −= 2uvx = and .3vuy =
u
z
∂
∂ and 

v
z
∂
∂  

Solution  
 First find the partial derivatives 

  ( ) 44 2 =
∂

=
∂z

−
∂∂

yx
xx

   ( ) yyx
yy

24 2 −=−
∂

z
∂
∂ ∂

=  

  ( ) 22 vuvx
=

∂
=

∂   ( ) vuvu
uu

y 23 3=
∂
∂

=
∂
∂  

uu ∂∂
 

( ) uvuv
vv

x 22 =
∂
∂

=
∂
∂    ( ) 33 uvu

v
y

=
∂
∂

=
∂
∂    

Therefore 

( )( )
252

22

64
324

vuv
vuyv

u
y

y
z

u
x

x
z

u
z

−=

−+=

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

   

  

     
EXERCISES 

 
main of the following func

a 

    

Find the do tion 
2 21z x= − −  y b ( )21z x y= + − − ( )2lnz x y= +   c 

d ( )lnz x y= +  e 2 21 1z x y 2 24 4z x y= − + −  = − + −  d 

 
Find all first partial derivatives of each of function 

1 ( ) ( )4, 2f x y x y= −  2 ( ) ( )3 22, 4f x y x y= −   

3 ( )
2 2

, x yf x y
xy

=  
−

4 ( ), cox sf x y e y=  

6 ( ) 2,5 n( ), siyf x y e x=  2f x y x y= −  

( ), xyf x y e=  ( ) ( ), arctan 74f x y y= −  7 8 x

( ) ( )2 2, cosf x y y x y= +  ( ) 3, 3 cos 2f r rθ θ=  9 10 

 

atVerify th  
2 2f f
y x x
∂ ∂

=
∂ ∂ ∂ ∂

 
y

1 12 ( ) ( )53 2,f x y x y= +  ( ) 2 3 3 5, 2f x y x y x y= −  1

13 ( , ) 23 cosx 14 ( ), arctanf x y xy=  f x y ye=  

( ) 2, x yF x y
xy
−

= , find ( )3, 2xF − ( )3,y 2F −21 and If .  

If ( ) ( )2 2, lnF x y x y y= + + ( )4 and 1,xF − ( )1,4yF −x22 , find . 

 

 11



Lecture Note  Partial Differentiation 

A functi hat sa ace’son of two variables t tisfies Lapl  Equation 
2 2

2 2 0f f
x y

∂ ∂
+ =

∂ ∂
is said to be 

ic. Show that the following fun are harmon ctions. 
3 

harmon ctions ic fun

( ) 3 3,f x y x y xy= −   24 ( ) ( )2 2, ln 4 4f x y x y= +  2

 
25 If ( ) 2 2 2, , 3f x y z x y xyz y z= − + find each of the follo

 a. ( ), ,x

wing: 

f x y z  b. ( )0,1,2yf  c. ( ), ,xyf x y z  

( ) ( )4226 If 3, ,f x y z x y z= + + , find each of the followin  g

( ), ,x b. (0,1,yf )1  c. ( ), ,zzf x y z  f x y z   a.

27 The heat equation 
2

2

u uc
x t
∂ ∂

=
∂ ∂

is the im rtant ation in physics (c is a constant). It is called 

tial differential equation. Sh

po equ

par ow that the functions 
( )2 41 2sin and x ctu x ucte t e−− −= =  

 satisfy the heat equation. 

28 Find the indicated limit or state that it does not exist. 

 a.

 

(
 
( ) ( ) ( )

3

2, 1,2
lim

x y 1
xy y−

x y+ +→ −
 b.

( ) ( )

)
( ) ( )

( )2 2

2 2, 0,0

tan
lim

x y

x y
x y→

+

+
 

2sin 2

2 2, 0,0
lim

3 3x y

x y
x y→ +

 
+

c.

 d. 
( ) ( )

2 2

4 4, 0,0
lim

x y

x y
x y→ −

 c.
( ) ( )

4 4+
2 2, 0,0

lim
x y

x y
x y→

−
+

 

29 Show that

 

( ) ( ) 2 2, 0,0
lim

x y

xy
x y→ +

does not exit by considering one path to the origin along the x-axis 

ther path alon e line .  

0 Show that

and ano g th =y x

( ) ( )

3

2 2, 0,0
lim

x y

xy y
x y→

+
+

d3 oesn’t exist.  

31 Let ( )
2

4 2, x yf x y
x y

=
+

 

 a. Show th s ( )( ),f x y → a0 ( ),at , 0x y → 0 along any straight line y mx= . 

 b. Show that ( ) 1,
2

f x y → as ( ) ( ), 0x y → ,0 along the parabola 2y x= .  

hat conclusion do you draw? 

 satisfies the equation 

 c. W
 
 
Supplementary Exercise 
1 Show that the function ( )z x2 2yϕ= + 0z zy x

x y
∂ ∂

− =
∂ ∂

 

rivatives of the function arctan xz
y

=  2 Find the second order partial de

3 Find the total differentia  function of l of the ( ) 2 2, 2 3f x y x xy y= − −  

 arctan yu
x

= satisfies Laplace equation 
2 2

2 2 0u u
x y
∂ ∂

+ =
∂ ∂

 4 Show that the function

 12



Lecture Note  Partial Differentiation 

 
ons Find the first order partial derivatives of the following functi

5 2 2sinz x y= , answer: 22 sinz x y
x

2 sin 2z x y
y
∂

=
∂

 
∂

=
∂

, 

22 1yz y x
x

−∂
=

∂
6  

2yz x= , answer: , 
2

2 lnyz x y x
y
∂

= ⋅  
∂

7 
2 2 2x y zu e + += answer: 

2 2 2

2 x y zu xe
x

+ +∂
=

∂
, 

2 2

2
2x yu ye z

y
+ +∂

= , 
2 2 2

2 x y zu ze
z

+ +∂
=

∂
 

∂
2 2 2z+8 u x y= +  

 
Find the total differential of the following functions 

 
in

 y

 

9 ( )inz x yarcs= +  

10 2x x+( ) 2, sz f x y y y= = +  

( )lnz x=  11
2 2x yz e +=  12

( )2,3xf and ( )2,3yf if ( ) 2 2,f x y x y= + . Answer: ( ) ( )2,3 4, 2,3 6x yf f= =  13 Find 

14 Let ( ) 2

, xyf x y e= xyxf , ,, find xx yxxyf f  

dz dt15 Find using chain rule 

a =

b 

2 3 4 23 , ,z x y x t y t= =  

( )2 2ln 2 , ,z x y x t y 3t+ = =  

c 

=

3cos sin , 1 , 3z x xy x t y= − = =  t

16  Find 
z
u
∂
∂

and 
z
v∂

by the chain rule
∂

 

va u28 2 3 , ,z x y x y x v y u= − + = = −  
2 2 2tan , ,z x y x x u v y u v= − = =  b 

, 2cos , 3sinxz x u y
y

= = =  c v

 v

17  Use ain rule to find 

d 3 2 , lny x u v= − = + 2, lnz x u y u v= −  

3t

dz
dt =

2 2, ,z x y x t y t= = =   ch 7+

18 Use chain rule to find the value of 
1, 2 1, 2

,
u v u v

f f
u v= =− = =−

∂ ∂
∂ ∂

if 

( ) 2 2 3, 2 , ,f x y x y x y x u y uv= − + = =  

e value of  
 

19 Use chain rule to find th

 
2, 6rr

z

θ π= =∂
and 

∂

2, 6r

z

θ πθ = =∂
if 

∂ , cos , sinx yz xye x r y rθ θ= = = .  

20 Let 2 2r x y= + , show that  

r x
c

2 2

2 3

r y
x r
∂

=
∂

 d
2 2

2 3

r x
y r
∂

=
∂

 
r y

 a 
x r
=

∂
 b

∂
y r
=

∂
 

∂

 13
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1 Show that the following function satisfies Laplace equation
2 2

2 2 0f f
x y

∂ ∂
+ =

∂ ∂
 

s

2

 a sin c( ), ox yf x y e x= +  y e

b ( ) ( )2 2, lnf x y x y= +   

c ( ) 2 2

2, arctan xyf x y
x y

=
−

  

22 Find the gradient f∇   
( ) 2, 3f x y x y xy= +  a. ( ) 2 2, , 2f x y z x y z= + +  
( ) 3 3,f x y x y y= −  b. 

c. xyy xe=  
d. os( ) 2, cf x y x y y=  

e. ( ) )(2,f x y x y y= +  x

f. 

( ) 2 2 2, ,f x y z x y y z z x= + +  g. 
 ( ) 2, , x yf x y z x ye −=  h.

 

ven function at the given point  
)2,3

)2

23 Find the gradient vectors of the gi
( ) (2 2, ;f x y x y xy= − −  a. 

b. ( ) = (2, 3 ; 2,f x y x y xy+ −  

( ) ( )
2

, ; 2,c. 1xf x y
y

= −  

 
 
 



Lecture Note  Multiple Integral
   

Chapter 2 

 
Multiple Integral 

 
1 Double Integral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.1 Definition 
Let R be a region in the xy-plane and ( ),f x y ≥

kA x

0

y

. In xy-plane, we draw the lines 
parallel to x-axis and y-axis so that we get n sub-rectangles in the region R. The sum 
of the area of each sub-rectangle is approximate to the area of the region R. Any kth 
sub-rectangle whose area is defined by Δ = Δ ⋅Δ  is

)
 the base of a solid with the 

altitude ( ,k kf x y∗ ∗ . Then the volume of this kth solid is defined by  

  ( ),k k kV f x y A∗ ∗= Δ k

)

 
Hence the volume of the solid whose base is the region R and bounded above by the 
function ( ,f x y is approximate to  

  ( )
1 1

,
n n

k k k
k k

V V f x y∗ ∗

= =

= = Δ∑ ∑ kA

This sum is called Riemann sums, and the limit of the Riemann sums is denoted by  

  ( ) ( )∑∫∫
=

∗∗

+∞→
Δ=

n

k
kkkn

R

AyxfdAyxf
1

,lim,

which is called double integral of ( ),z f x y= over the region R.  
 
1.2 Properties of double integrals 
 (i). Linearity rule: for constants a and b 
  ( ) ( )[ ] ( ) ( )∫∫ ∫∫+=+

R R

dAyxgbdAyxfadAyxbgyxaf ,,,,∫∫  
R

 (ii). Dominance rule: if ( ) ( )yxgyxf ,, ≥ throughout a region R, then  

z

( )yxfz ,=

y

( )x ∗∗
kk yx ,

kAArea Δ

 15
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  ( ) ( )dAyxgdAyxf
RR
∫∫∫∫ ≥ ,,  

 (iii). Subdivision rule: If the region R is subdivided in two and , then  1R 2R
  ( ) ( ) ( )dAyxfdAyxfdAyxf

RRR
∫∫∫∫∫∫ +=

21

,,,  

 
1R 2R

R

 
 
 
1.3 The Computation of Double Integral 
 (i) Over Rectangular Region 

 
If is continuous over 
therectangle , then the double 
integral may be evaluated by either iterated 

integral; that is,  

( yxf ,

R
∫∫

)
dycbxaR ≤≤≤≤ ,:

( )dAyxf ,

x

y

a b

c

d
[ ] [ ], ,R a b c d= ×

  ( ) ( ) ( )dydxyxfdxdyyxfdAyxf
b

a

d

c

d

c

b

aR
∫ ∫∫ ∫∫∫ == ,,,

Example 1  
compute , where ( )dAy

R
∫∫ −2 R is the rectangle with vertices ( ) ( ) ( )2,3,0,3,0,0 and 

. Answer: 6 ( 2,0 )
Example 2 

Evaluate ∫∫ where R is the rectangle
R

dAyx 52 10,21 ≤≤≤≤ yx . Answer:
18
7  

(ii) Over Nonrectangular Regions 
Type I region  
This region can be described by the inequalities 

( ) ( )1 2: ,R a x b g x y g x≤ ≤ ≤ ≤  
 y

( )xgy 2 =
 
 
 
 
 

( ) ( )
( )

( )2

1

, ,
g xb

R a g x

f x y dA f x y dydx=∫∫ ∫ ∫  

 Type II region 
This region can be described by the inequalities 

( ) ( )1 2: ,R c y d h y x h y≤ ≤ ≤ ≤  

( ) ( )
( )

( )2

1

, ,
h yd

R c h y

f x y dA f x y dxdy=∫∫ ∫ ∫  

 c

d

x

( )yhx 1=
( )yhx 2=

x
a b

( )xgy 1=

R
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Example 3 
 double integral where 

the lines

 ( )∫∫ +
T

dAyx

1,2

Evaluate the T is the triangular region enclosed by 

. Answer: 
3
4,0 == xx= yy . 

Example 4 

over the region R enclosed betweendAxy
R
∫∫ 4,2,,

2
1

==== xxxyxy . 

Answer: 
6

11

Evaluate 

  

1.4 Change es in Double Integrals 
e

 of Variabl
Let Δ and R be the regions in xy-plane ( 2 ) wher  Δ is the new region. A point in 
this region is defined by ( ),u v where ( ) ( ), , ,x x u v y y u v= = . If ( ),z f x y= is 
continuous over the regio  then 
  ( )

n R ,
( ) ( ), , , ,

R

f x y dxdy f=∫∫ ∫∫ x u v y u v J dudv
Δ

⎡ ⎤⎣ ⎦  

where J is called Jacobian and is defined by 

  
x x
u v
∂ ∂
∂ ∂= y y
u v

J ∂ ∂
∂ ∂

 

 
Special Case: Change from Cartesian Coordinates to Polar Coordinates  

 
 

r

( ),M x y
( ),cos

sin
x r
y r

θ
θ

=⎧
⎨ =

 
⎩

y M r θ  

θ 
en,  

 

  

xth
 

cos sin
sin cos

x x
u v
y y
u v

r
J r

r
θ θ
θ θ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

−
= =  =

 
ence we obtain H

 ( ), ( )cos , sin
R
∫∫ dxdy f r r rdrdθ θ θ

Δ

= ∫∫  f x y

 
xample 5 E

( )2 2

R

Compute I x y dxdy∫∫ , 

2 2 2 , 0,x y ax a+ = >

R is a region defined by hemi circle 

. Answer: 

= +

0y ≥
43

4
a π  

Example 6 

Compute ( )2 2

R

( ){ }2 2 2, : 1,R x y x y yI x y dxdy+∫∫ , 0= ∈ + ≤ ≥ .Answer:
4
π   =

  
ral 2 Triple Integ
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2.1 Definition z

x

y

dx

dy

dz
V

•
kV

( )M , ,k k kx y z

z

x

y

V

( )2 2 ,z f x y=

( )1 1 ,z f x y=

R

Let V be a solid and ( ), ,f x y z

ined in 3

be a three- 

e 
 
y, 

y 

gral of the function 

variable function def . Every plan
parallel to each of the three coordinate planes
cut the solid V in to n small parallelepipeds, sa
vk (see the figure) whose volume is defined b
vk dydz= .   
Then the triple inte

dx

( ), ,f x y z  over the solid region V is def

 

ined as 
follows: 

( ) ( )
1

, , lim , , Δv
n

k k k kn kV

f x y z dxdydz f x y z
→+∞

=

= ∑∫∫∫  

2. 2 The Computation of Triple Integrals 
alityLet V be a parallelepiped defined by the inequ  , ,a x b c y d m z n≤ ≤ ≤ ≤ ≤ ≤  

then 

( ) ( ), , , ,
n d b

V m c a

f x y z dV f x y z dxdydz=∫∫∫ ∫ ∫ ∫   

 
xample 1 

where
E
Compute ∫∫∫ 2 x

V

z ye dV ( ){ }3, , :0 1,1 2, 1 1V x y z x y z= ∈ ≤ ≤ ≤ ≤ − ≤ ≤ .  

Ans: 
ple  

1e  −
Exam  2

[ ] [ ] [ ]0,1 0, 2 1,3V = × ×Compute 8
V

xyzdV∫∫∫ where . Answer: 32 

2.3 A z-Simple Region 
n that is bounded 

 

. The projection of 
 

e solid region n 

Suppose V is a solid regio
above by the surface ( )1 1 ,z f x y= and below

by the surface 2 2z f=
this solid regio e results in region R
in the plane. If ( ), ,w f x y z= is a continuous 
function over th  V, then we obtai

( ),x y
xy-plann on 

( ) ( )
( )

( )2

1

,

,

, , , ,
f x y

V R f x y

f x y z dV x y z dz dA
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫∫∫ ∫∫ ∫  

 
xample 3 E

V

xdV

cylinder

∫∫∫ where V is a solid in the first octant and bounded by 

 and the plane

Compute 

2 2 4x y+ = 2 4y z+ = . Answer: 20
3

.  
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2.4 Chang ariables in Triple Integrals es of v
Let be a new solid region, andV ′ ( ) ( ) ( ), , , , ,, , ,x x u v w y y= = u v w z z u v w= . Then 

( ) ( ) ( ) ( ), , , , , , ,, , ,
V V

f x y f x u v w y z u v w du⎡ ⎤⎣ ⎦∫ z dV u v w=∫∫ ∫∫∫ J dvdw  
′

where J is called Jacobian and is defined by  
x x x
u v w
y y yJ

∂ ∂ ∂
∂ ∂ ∂
∂

u v
z z

w
z

u v w

∂ ∂
=

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

2.4.1 From Cartesian to Cylindrical Coordinate System 
  

z

cos
sin

x r
y r

θ
θ

=⎧
⎪ =  

z z
⎨
⎪ =⎩

 
The Jacobian is defined by 

  cos sin 0
sin cos 0

0 0 1

x x x
u v w r
y y yJ r r
u v
z z

∂ ∂
∂ ∂

w
z

u v w

θ θ
θ θ

∂ ∂ ∂
∂ ∂ ∂ −
∂ ∂ ∂

= = =
∂
∂

∂ ∂ ∂

 

rtesian coordinate to Spherical Coordinate System 
 
We have

2.4.2 From Ca

cosx r θ= , siny r θ=  and sinr ρ φ= , hence we can find  

 sin siny
sin cos

cos

x

z

ρ φ θ
ρ φ θ⎪ =⎨  
ρ φ

=⎧

⎪ =⎩
 

2
and furthermore we can obtain the relation 
 2 2 2x y z ρ+ + =  
Now we compute the Jacobian. 

  
 
 

2

sin cos sin sin cos cos
sin sin sin cos cos sin sin

cos 0 sin

x x x

y y y

z z z

φ φ θ ρ φ θ ρ φ θ
J

ρ θ

φ θ ρ φ θ ρ φ θ ρ φ
ρ θ φ

φ ρ φ

ρ θ φ

∂ −
∂ ∂ ∂

= = = −
∂ ∂ ∂

−
∂ ∂ ∂
∂ ∂ ∂

 

Hence 

∂ ∂ ∂
∂ ∂

2 sinJ ρ φ=  
 
 

θ
r

O

( ), ,0r θ

( ), ,r zθ

y

x

z

y

x

ρ

( ), ,ρ θ φ
φ

θ
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Exampl
Compute

e 4 
2 2

R

x y dxdy+∫∫
2 2 4x y+ = and

, where R is the region in xy-plane, enclosed between the 

circle . Answer: 2 2 9x y+ = 38
3
π  

Example 5 
Compute where V is a solid above xy-plane, inside the 

ylinder 2

V

dxdydz∫∫∫
2 2

x
c x y a+ = , but below the parabola 2 2z x y= + . Answer: 4

2
aπ  

Example 6 

Compute  is the region enclosed in the ellipsewhere R
2 2

R

dxdy∫∫ 2 2 1
a b
x y

+ = .  

 let ,x yu v . Answer: abπ(Hint: ) 
a b

= =

Example 7 
Use spherical coordinate system to compute  

2 22

2 04 x

z x y+ +∫ ∫ Answer: 
42 4

2 2 2 2

2

x yx

z dzdydx
− −−

− − −

∫  64π
9

 

ons 
utation of a P

 
  y

3 Applicati
3.1 Comp lane Area 
The area of the region D in 2 is found by 

x

y

D
D

dxdA = ∫∫  

Example 1 
Find the area of the region enclosed between cosy x= and 

where siny x= 40 x π≤ ≤ .  

Answer: 2 1− .  

 so y 
e surfac , xy-plane where 

 
3.2 The Volume of a Solid 
 (i). The volume of a lid defined b

e ( ),z f x y=th z

( ),x y D∈  (see ,  the figure) and ( ), 0f x y ≥
( ),z f x y=

D
x

( ),f x y is continuous over   

 

 
ordinate pl

plane y . Answer:

D, is found by
 

)y dxdy( ,V f x= ∫∫  y
D

 
 
Example 2 
Find the volume of a tetrahedron generated by
the three co anes and the 

4 4 2z x= − − 4
3 . 

Example 3 
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S

Find the volume of the solid generated by 2 1z 22x y= + + , 1x y+ = and the three 
coordinate planes. Answer: 3

4   
(ii). Le S be the solid region in the space , then the volume of this solid can 
be found by 

   

 

 
Examp

lid enclosed in sphere 

3

 
 S

V dxdydz= ∫∫∫

 
 
 

 
 

 
S

le 4 
2 2 2 4x y z+ + =Find the volume of a so and paraboloid 

2 2 3x y z+ = . Answer: 19
6
π  

 
3.3 Surface Area as a Double Integral  
Assume that the function has continuous 
partial derivatives and in a region R of the xy-
lane. Then the p o

 ( )yxf ,

yf
f the surface 

 xf
ortio

( ),z f x y=

( )yxfz ,=p n that 
es over R has surface area Sli  and is found by  

 
  ( )[ ] ( )[ ] dA RyxfyxfS yx∫∫ += ,, 22

R

+1  

 
 
 
Example 5 
Find the surface area of the portion of the plane x

octant (where 0,0,0 ≥≥ zyx ) 
Solution 

Let ( ) yxyxfz −−== 1, , then 

++ y 1=z that lies in the first 
≥

( ), ( ) 1, −=yxf y . Then yxf x 1−= and

( ) ( )
1 1 1 1

2 2

0 0

31 1 1 3
2

x x

dydx dydx
− −

− + − + = ∫ ∫  

xample 6 
ind the surface area of that part of the paraboloid   that lies above the 

0 0

S = =∫ ∫ 

 
E

522 =++ zyxF

( )plane 1=z .ans: 117
6

−23π  

7 Example 
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 2 2 9y zFind the surface area of the portio e cylindern of th + = that lies he 
rectangle

 above t

( ){ }2, :0 2,R x y x= ∈ ≤ ≤ 3 3y− ≤ ≤ . Answer: 6π  

3.4 Mass and Center of Mass 
.4.1 Mass of a Planar Lamina of Variable Density 

ina is a flat plate that occupies a region R in the plane and is so thin that 

 
If 

3
A planar lam
it can be regarded as two dimensional.  

δ is a continuous density function on the lamina corresponding to a plane region R, 
s m of the lamina is given by then the mas

 
 ( )dAyxm

R
∫∫= ,δ   

Example 8 
Find the mass of the lamina of density ( ) 2, xyx =δ that occupies the 

region R bounded by the parabola 22 xy −= and the line 
xy =  

R

Solution  
We find the domain of integral. By substitution we have 

  22 xx −=  Then 1,2−=x  
Thus,  

 
22 x−1

2 2

2

63
20R x

m x dA x dydx
−

= = =∫∫ ∫ ∫  

Example 
A triangle lamina with vertices 

 
9 

( ) ( ) ( )0,0 , 0,1 , 1,0 ( ),x y xyδ = . has density function 
1Find its total mass. Answer: 
24

 

 
3.4.2 Moment and Center of Mass 
The moment of an object about an axis measures the tendency of 

e object to rotate about that axis. It is defined as the product of 
the object's mass and the signed distance from the axis.  
th

If ( )yx,δ  is a continuous density function on a lamina 
g to a plane region R, then the moments of mass with respect to the x-

defined by  
an  

correspondin
axis and y-axis, respectively,  

( )dAyxyM ∫∫= ,δ  d
R

x ( )dAyxxM
R

y ∫∫= ,δ  

( )yx,Furthermore, if m is the mass of the lamina, the center of mass is , where  

m
M

x y=  and 
m

M
y x=  

If the density δ is constant, the point ( )yx,  is called the centroid of the region.  
  
Example 10 
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Locate the center of mass of the lamina of density ( ) 2, xyx =δ
and line

that occupies the 
region R bounded by the pa 22 x−=rabola y xy = .  

Solution  

( )
7
9,

2

= ∫ ∫
−

yxdAy
x

1 2 2−x
2 −== ∫∫ dydxxyM

R
x δ   We have 

   ( )
5

18,
1 2

3

2

−=== ∫ ∫∫∫
−

dydxxxxM
x

δ  
2−

dAy
xR

y

 From previous example we found mass 
20

=m . 63 Then,  

 
7
8

20
63

5
18

−

49
20

20
63

7
9

−=
−

==
m

M
y x  −===

M y  x
m

⎟
⎠
⎞

⎜
⎝
⎛ −−

49
20,

7
8  Hence the center of mass is 

 
e can  a solid in with 

density
W  use the triple integral to find the mass and center of mass of

( )
3

zyx ,,δ . The mass m, moments about the yz, xz, xy-
plans, respectively, and coordinates 

yzM , xzM , xyM and 
zyx ,, of the center of mass are given by: 

 Mass   
 

( )dVzyxm
R
∫∫∫= ,,δ  

( )dVzyxM
R

yz ∫∫∫= ,,δ Moments  x , x is the distance to the yz-plane 

   ( )dVzyxyM ∫∫∫= ,,δ , y is the distance to the xz-plane  
R

xz

    ( )dVzyx
R

,δzM xy ∫∫∫= , , z he distance to the xy-plane  is t

Center of mass ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m
M

m
M

m
M

zyx xyxzyz ,,,,   

 

A solid tetrahedron has vertices
Example 11 

( )0,0,0 , ( )0,0,1 , ( )0,1,0 and ( )1,0,0  and constant 
density 6=δ . Find the centroid. 

Solution 
e described as the reg

beneath the plane
The tetrahedron can b ion in the first octant that lies 

1x y z+ + = . Then  

=

hen we find that  

 
1 1

0
m dVδ= =∫∫∫ ∫

1

0 0
6 1

x x y

R

dzdydx
− − −

∫ ∫  

T
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1 1 1

0

1x x y

yz
R

M x V xdzdydx
− − −

= = =∫∫∫ ∫0 0

1 1 1

0 0 0

1 1 1

0 0 0

6 6
4
16 6
4
16 6
4

x x y

xz

x x y

xy
R

d

M ydV ydzdyd

M zdV zdzdydx

− − −

− − −

= =

= =

∫ ∫

∫∫∫ ∫ ∫ ∫

∫∫∫ ∫ ∫ ∫

 x 
R

=

=

Thus, 1 1, ,
4 4

yz xyxzM MMx y z
m m m

= = = = = =   1
4

 
3.5 Moments of Inertia 
In general, a lamina of density ( ),x yδ

L

covering region R in the first quadrant of the 

nt about a line  given by the integral L
R

M sdm= ∫∫
 a typical point ,P x

plane has first mome where 

is the distance from in R to L.  

f mome

( )δ= ,m x y dAand s s
 
d ( )y,x= ( )y

Similarly, the second moment o nt of inertia of R about L is defined by  
2

L
R

I s dm= ∫∫ .  

oments of inertia measure the tendency of the lami sist a In physics, the m na to re
hange in rotational motion about axis L.   c

 
The moments of inertia of a lamina of density δ covering the plane region R about x-, 
y-, z-axis, respectively, are given by  

y

 
( )2 ,xI y x y dA

  ( )2 ,y
R

I x x y dA

( ) ( )2 2 ,

R

z x
R

I x y x y dA I Iδ

δ=

δ=

= + =∫∫ +

 

Example 12 
A lamina occupies the region R in the plane that is bounded by the parabola 

z

∫∫
2 2s x y= +

∫∫  y

s x=

 
 

2y x=  
and the line , ands 2x = 1y = . The density of the lamina at each point ( ),x y is 

( ) 2,x y x= yδ . Find the moments of inertia of the lamina about the x-axis and y-axis.  
Solution  

  
( )

222 2 2 2

1 1

2 2 3

1 1

,

1516
33

x

x
R R

x2

I y dm y x y dA y x ydydx

x y dydx

δ= = = ⋅

= =

∫∫ ∫∫ ∫ ∫

∫ ∫
 

  
222 2 2 4

1 1

1138
45

x

y
R R

I x dm x x ydA x ydydx= = ⋅ = =∫∫ ∫∫ ∫ ∫  

x R( ),x ys y=
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Example 13 
( ),x y xδ =A lamina with density y  is bounded by the x-axis, the line and the 

curve

8x =
2 3y x= . Find the m ment of inertia about the 3 axes.  

Solution  
o

  

2 3

2 3

83 3

0 0

83 3

0 0

6144
7

6144y
R

z x y

I x x ydydx

I I I

= = =

= +

∫∫  

x

x
R

x

I xy dA xy dydx

ydA

= = =∫∫ ∫ ∫

∫ ∫

lculate the moments of inertia of the solid in which are defined as 
follows:  
  

3We can ca

( ) ( )2 2 , ,x
R

I y z x y z dVδ= +∫∫∫  

( ) ( )2 2 , ,y
R

I x z x y z dVδ= +∫∫∫    

( ) ( )2 2 , ,  z
R

I x y x y z dVδ= +  ∫∫∫
 
Example 14 
Find the moment of inertia about the z-axis of the solid tetrahedron S with vertices 

) and density ( ) ( )0,0,0 , 0,1,0 ( ) (, 0,0,1 , 1,0,0 ( ), ,x y z x=  δ
Solution  

( ) ( )

( )

2 2

1 1 1 2 2  
0 0 0

1

, ,

90

z
R

x x y

I x y x y z dV

x x y dzdydx

δ

− − −

= +

= +

=

∫∫∫

∫ ∫ ∫  

  
Exercises 

 
1 Let

 

( ){ }, :1 4,0 2R x y x y= ≤ ≤ ≤ ≤ . Evaluate ( ),
R

f x y dA∫∫ where  

a.  (Answer: 14) 

 b. 2

( )
2, 1 3,0 2

,
3, 3 4,0 2

x y
f x y

x y
≤ < ≤ ≤⎧

= ⎨ ≤ ≤ ≤ ≤⎩

( )
2, 1 3

, 1, 1 3,1
3, 3

x y
f x y x y

≤ <⎧
⎪

,0 1≤ <

4,0 2x y
= ≤ < ≤⎨
⎪
⎩

≤
≤ ≤ ≤ ≤

 (Answer: 12) 

 
2 Evaluate the following integral 

 a.
1 2 1 1

2

0 1

xy dxdy∫ ∫
0 0

xyye dxdy∫ ∫ (Answer: 1
2 )   b.  (Answer: ) 2e −
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1 2 2

 c.
0 0

siny xydxdy
π

∫ (Answer: ∫ 1
20 )  d. 

1 1

1 1
2x dxdy

− −
∫ ∫  (Answer: 4

3
) 

e. ( )
1 1

2 2 ) f. 
2 1

1 0

xdxdy
y∫ ∫

1
3

− (Answer: ln 2
2

 
0 1

xy x y dxd−∫ ∫ y (Answer: ) 
−

 g. ( )2 2

0 1

1 2

x y dxdy+∫ ∫ (Answer: 8
3

)  h. (Answer: 2) 
ln3 ln 2

0 0

x ye dydx+∫ ∫

( )

1 1

2
0 0 1

x dydx
xy +∫ ∫ i.  (Answer: 1 ln 2− ) j.

0

2
ln 2 1

0

y xxye dydx∫ ( )1∫  (Ans: 2 1 ln 2− ) 

 
 re angula egion R.  

 a.
3  Evaluate the double integral over the ct r r

21
R

x x dA−∫∫  ( ){ }, :0 1, 2 3R x y x y= ≤ ≤ ≤ ≤  (Answer: 1
3 ) 

( ) b. ( )cos
R

x y dA+∫∫  { }, 4,0 y π≤ ≤ ) : 4 4R x y xπ π= − ≤ ≤  (Answer: 1

 c. 34
R

xy dA∫∫   ({ }), 1,R x y x: 1 2 2y= − ≤ ≤ ≤≤ − (Answer: 0) 

  Evaluate the following integrals 4

 a.
20 x

1
2

x

xy dydx∫ ∫  (Answer: 1
40

)   b. 
293 y−

0 0
∫ ∫ ydxdy (Answer: 9) 

 c. 
32

0

sin
x y dydx

x

π

π
∫ ∫ )  d.

2

2 0

1 cos
x y dydx

x x

π

π
∫ ∫(Answer:

2
π (Answer: 1) 

 e. ( )
2 2

0 0

a a x

)  f.
1

2 2

0 0

x y dydx∫ ∫ (Answer:
−

+
32

3
a 1

12

x

y x y dydx− =∫ ∫  

5 6
R

xydA∫∫ R is the region bounded by 0 and 2y x=, 2,y x= =, where (Ans: 32) 

6 cos
R

x xydA∫∫ , where R is the region enclosed by 

1, 2,x x 2,y π= = = and 2y xπ= . (Answer: 2
π
− ) 

7 2

R

x dA∫∫ 16y x= , y x= where R is the region bounded by and . (Ans: 576) 8x =

8 ( ) 1 221
R

x y dA
−

+ , where R is the region in the st quadrant, enclosed by ∫∫  fir

4y = and 2y x= .  (Answer: 1 17 1
2
⎡ ⎤−⎣ ⎦

9 

) 

2

1
1R

dA
x+∫∫ , where tices ( ) ( )0,0 , 1,1R is a triangular region with ver and .  

(Answer:

( )0,1

1 ln 2
4 2
π
− ) 
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10 ( )1
R

x Compute dA−∫∫ , R is the region enclosed between y x= and 3y x= . 

(Answer: 1
2
− ) 

11 
sin

2
0 0

cos
x
r drd

π

θ θ  (Answer:∫ ∫
1
6

) 

sin
2

2

π

π
2

0

a
r drd

θ
12 θ

−∫  (Answer: 0) ∫

13 ( )2 2x ye− +

∫∫ , where R enclosed by the circle 2 2 1x y
R

dA + =  (Answer: ( )eπ −−

14 

11 ) 

2 2

1 d∫∫1R

A
x y+ +

where R is the sector in the first quadrant that is bounded by 

: ln 5
8
π0,y y x= =  and 2 2 4x y+ = . (Answer ).  

:
8
π15 ( )

21 1 2 2

0 0

x
x y dydx+  (Answ

−

∫ ∫ er ) 

16 
22 2 2 2

0 0

x x
x y dydx

−
+  (Answer:∫ ∫

16 ) 
9

17 
( )

( ), 0dydx a > (Answer:
2 2

30 0 2 2 21

a a x

x y

−

+ +
∫ ∫ 2

11
21 a
π⎛ ⎞

−⎜ ⎟  
+⎝ ⎠

18 
22 4

2 20

1y− ( )5 1
4
π

1y
dxdy

+ +
∫ ∫ (Answer: −

x y
 

19 (Answer:
21 4

0 4

y

x
e dydx−∫ ∫ ( )161 1

8
e−− ) 

20 ( )3sin
R

y dA∫∫ , R is the region bounded by 

, 2,y x y x= = = 0(Answer: ( )1 1 cos8
3

− ) 

( )1 2 1 2 2 2

1 0 0
x y z dxdyd

−
+ +∫ ∫ ∫21 z  (Answer 8) : 

22 (Answer: 7)  
22

0 1 1

y z
yzdxdzdy

−∫ ∫ ∫
8123 9

0 0 0

z x
xyd

−

∫ ∫ ydxdz∫ (Answer:23 
5

) 

128
15

) 
2 2 2

2 2

2 4 3

0 0 5

x x y

x y
xdzdydx

− − −

− + +∫ ∫ ∫24 (Answer:

( )3 22 2 2 2 2 21 1 1

1 0−∫ ∫25 inate to compute Use spherical coord
0

x x y x y ze dzdydx
− − − − + +

∫  

(Answer: ( )11
3

eπ −− ) 

2 2 2

2 2 2

3 9 9 2 2 2

3 9 9

x x y

x x y
x y z dzdydx

− − −

− − − − − −
+ +∫ ∫ ∫  26 pute Use spherical coordinate to com

(Answer:81π ) 
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27 e of the 
ordinate planes and the plane

Use double integral to find the volum solid tetrahedron that
octant that is bounded by the three co y

 lies in the first 
5 2z x= − − . 

125(Answer: 
12

) 

28 Find the v lume of the solid thato  is bounded above by the plane 

below by the xy-plane and laterally by 

2 2z x y= + +  

0y = and 21y x= − . (Answer: 56
15

) 

29 Use double integral to find the volume of 
paraboloid 

the solid that is bounded above by the 
, below by the plane 2 29z x y= + 0z = and laterally by the planes 

lind

e and

0, 0, 3z y x= = = and 2y = . (Answer: 170) 
30 Use double integral to find the volume of the wedge cut from the cy er 

2 24 9x y+ =  by the plan . (Answer: 27
2
π0z = 3z y= + ) 

inate d 31 Use double integral in the first octant bounded by the three coord  planes an

the plane 2 4x y+ = and 8 4 0x y z+ − =  (Answer: 20
3

) 

32 Find the volume of the solid bounded above by the paraboliod 2 21z x y= − − and 

b  the xy-plane. (Answer:elow by
2
π ) 

33 Use double integral to find the volume of the solid common to the cylinder

 and 2 2 25x z+ = . (Answer: 

s 
2 2 25x y+ =

2000
3

)  

34 Find the volume of the solid enclosed by the sphere 2 2 2 9x y z+ + = and the 

cylinder x y+ = . (Answer: 2 2 1 ( )3
24 27 8

3
π

−  

35 Volume of the solid that is bounded above by the cone 2z x= +  by the 

xy-plane, and laterally by the cylinder

2y , below
2 2 2x y y+ = . (Answer: 32

9
r

) 

36 The integ eory, can be evaluated using a 

trick. Let the value of the integral be I. Thus  

al 
2

0
e

+∞

∫ which arises in probability thx dx−

2 2

0 0

x yI e dx e dy
+∞ +∞− −= =∫ ∫  since the letter used for  integra

in a defin e integral does not m  

the variable of tion 

it atter,

  a. Show that ( )2 2
2

0 0

x yI e dxdy
+∞ +∞ − +

= ∫ ∫  

  b. Evaluate 2I by convertin  polar coordinate and find I . g to
37 Find the surface area of the portion of the paraboloid 2 2z x y = + below the 

plane 1z = . (Answer: ( )5 5 1
6
π

+ ) 

38 Find the surface area of the portion of the cone y= + that is above the 
unded by the line y x

2 24 4z x 2

region in the first quadrant bo = and parabola 2y x= . 
5

6
) (Answer:
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39 Find the surface area of the portion of the paraboloid 2 21z x y= − − th t a is above 

the      xy-plane. (Answer: ( )5 5 1
6
π

+ ) 

40 Find the surface area o he portion z xy=f t of the surface that is above the sector in 
0y =  an3y x= , the first quadrant bounded by the line d the circle 2 2 9x y+ =

(Answer: 

. 

( )10 10 1
18
π

−  

41 Find the surface area of the portion o 2 2 2 16x y z+ + =f the sphere between the 
plane 1z = and 2z = . (Answer:8π ) 

 Find the surf42 ace area of the portion of 2 2 16x z+ = that lies inside the circular 
wecylinder 2 2 16x y+ = . (Ans r: 128) 

43 Compute sin
G

xy yzdV∫∫∫ , G is the rectangular box defined by the 

0 ,0 1,0 6x y zinequalities π π . (Answer:≤ ≤ ≤ ≤ ≤ ≤ ( )2 2π π− ) 
44 Use triple al to fin  integr d the volume of the solid in the first octant bounded by the 

coordinate planes and the plane3 6 4 12x y z+ + = . (Answer: 4).  
45 Use triple integral to find the volume of the solid  by the surface 

2
bounded

y x= and planes 4x z+ = and 0z = . ( swer: 25An 6 15 ).  
46 Use triple integral to find the volume o etween the elliptic 

and the plan
f the solid enclosed b

cylinder es 0z2 29 9x y+ = = and 3z x= + . (Answer:9π ) 
araboloid 

and parabolic cylinder er
47 Use triple integral to find the volume of the solid bounded by the p

2 24z x y= + 24 3z y= − . (Answ : 2π ). 
48 Use triple integral to find the volume of the solid that is enclosed between the 

sphere 2 2 2 22x y z a+ + = and the paraboloid 2 2az x y= + . (Answer: 

( )3 8 2 7
6

aπ
− ).  

49 Let G be the tetrahedron in the first octant bounded by the coordinate planes and

the planes

 

( )1, 0, 0, 0x y z a b c+ + = > > > . 
a b c

 a. List six different iterated integrals that represent the volume of G.  
1 b. Evaluate any one of the six to show that the volume of G. (Answer:
6

ab

50 A lamin ( ),

c ). 

a with density x y x yδ = + is boun  by the x-axis, the lided ne 1x =  and 

the curve y x= . Fin ass. (d its mass and center of m ( )13 190 6,, ,m x y ⎛ ⎞= = ⎜ ⎟ ) 

51 A lamina with density 
20 273 13⎝ ⎠

 ( ),x y xδ y= is in the 1  quadrant and is bounded by the 
2

st

circle 2 2x y a+ = and coordinates axes. Find the mass and center of mass. 

( ( )
4 8 8a a a⎛ ⎞, , ,

8 15 15
y= = ⎜ ⎟

⎝ ⎠
 m x

52 A triangular lamina is bounded by y x=  and 1x = , and x-axis. Its density is 1δ = . 

( )Find centroid of the lamina. ( 2 1
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

, ,x y = ) 
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 30

53 A lamina of density 1 occupies the region above x-axis and between the circles 
2 2 2x y a+  and 2 2 2x y b+ = ( a b< ). Answer: =

( )2 2

2
b am π

= − ( ) ( )
( )

3 3

2 2

4 b a

b aπ

−

−
, 0,⎜ ⎟=

⎜ ⎟3
x y

⎛ ⎞

⎝ ⎠
 

54 A cube is defined by the three inequalities 0 ,0 ,0x a y a z a≤ ≤ ≤ ≤ ≤ ≤ , has 
density ( ), ,x y z a xδ = − . Find ass and cente its m r of mass. Answer: 

4

2
am = ( ), , , ,

3 2 2
a a ax y z ⎛ ⎞= ⎜ ⎟

⎠
.  

⎝
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Chapter 3 

 
Ordinary Differential Equation I 

 
1 Introduction 
1.1 What is a differential Equation? 
A differential equation is any equation, which contains derivatives, either ordinary 
derivatives or partial derivatives. If the unknown function depends on a single real 
variable, the differential equation is called an ordinary differential equation. The 
followings are the ordinary differential equations. 

 2dy y y
dx

+ = , 
2

2

d y xy
dx

= , ( )
2

2 2
2 4 0d y dyx x x y

dx dx
+ + − =  

 
In the differential equations, the unknown quantity ( )y y x= is called the dependent 
variable, and the real variable, x , is called the independent variable. 

In here we define ( )
2 3

2 3, , , ,
n

n
n

dy d y d y d yy y y
dx dx dx dx

′ ′′ ′′′= = = =… y  

 
1.2 Order of a Differential Equation 
The order of a differential equation is the order of the highest derivative that occurs in 
the equation.  
For example,  

 3dy y
dx

− = 2  1st order 

 
2

2 3d y dyx y
dx dx

+ − = 0  2nd order 

4

4 0d y y
dx

− =  4th order 

 
 Definition: Ordinary Differential Equation 

An nth-order ordinary differential equation is an equation that has the general form 
( )( ), , ', ",..., 0nF x y y y y =  

where the primes denote differentiation with respect to x , that is, 
2

2,dy d yy y
dx dx

′ ′′= = , and so on 

 
1.3 Linear and Nonlinear Differential Equations 
A linear differential equation is any differential equation that can be written in the  
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form ( ) ( ) ( ) ( ) ( )
1

1 1 01

n n

n nn n

d y d y dya x a x a x a x y f x
dx dx dx

−

− −+ + + + =  

with not identical zero. The ( )na x ( )ia x are known functions of x called coefficients. An 
equation that is not linear is called nonlinear. When the coefficients are constant 
functions, the differential equation is said to have constant coefficients. Furthermore, the 
differential equation is said to be homogeneous if ( ) 0f x ≡ and non-homogeneous if 

( )f x  is not identically zero.  
 
Examples of classification of Differential Equations: 
 

Differential equation 
Linear or 
Nonlinear Order 

Homogeneous or non-
homogeneous 

Constant or 
variable 
coefficients 

1dy xy
dx

+ =  Linear 1 Non-homogeneous Variable 

2

2

d y dyy y x
dx dx

+ + =

 

Nonlinear 2 Non-homogeneous Variable 

2

2 3 2 0d y dy y
dx dx

+ + =

 

Linear 2 Homogeneous Constant 

4

4 3 sind y y x
dx

+ =  Linear 4 Non-homogeneous Constant 

 
1.4  Solutions 
A function is a solution of a differential equation on an interval if, when substituted into 
the differential equation, the resulting equality is true for all values of x in the domain of
( )y x . 

Example 1 
Verify that ( ) 2siny x x= + x is a solution of the second order linear equation  

  2 2y y x′′ + = +
Example 2 

Verify that the function ( ) 23 xy x e=  is a solution of the differential equation 2 0dy y
dx

− =

for all x .  
 
1.5 Implicit/Explicit Solution 
An explicit solution is any solution that is given in the form ( )y y x= . In some 
occasions, it is impossible to deduce an explicit representation for y in term of x . Such 
solutions are called implicit solutions. 
Example 3 
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The relation yx e= + y  implicitly defines y as a function of x . Verify that this implicitly 
defined function is a solution of the differential equation 

1
1

dy
dx x y

=
− +

 

Solution 
 Differentiating yx e= + y with respect to x  gives 

( )

1

1 1

y

y

dy dye
dx dx

dye
dx

= +

= +
 

Thus  
1

1y

dy
dx e

=
+

 

Substitute this and xx e y= +  into the equation gives 
1 1

1 1y ye e y y
=

+ ⎡ ⎤+ − +⎣ ⎦
 

or 
1 1

1 1y ye e
=

+ +
 

which is true.  
 
1.6 Initial-Value Problem (IVP) 
 
An initial-value problem for an nth-order equation  

2

2, , , , , 0
n

n

dy d y d yF x y
dx dx dx

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

consists in finding the solution to the differential equation on an interval that also 
satisfies the initial conditions 

I
n ( ) ( ) ( ) ( )1

0 0 0 1 0, , , ny x y y x y y x−′= = =… 1ny −  where 0x I∈  
and  are given constants.  0 1, , ny y y −1,…
 
Example 4 
Verify that ( ) sin cosy x x= + x is a solution of the initial value problem 

( ) ( )0, 0 1, 0 1y y y y′′ ′+ = = =  
Solution  
 We have ( ) cos siny x x′ = − x  

   ( ) sin cosy x x′′ = − − x  
Substituting into the equation gives 

( ) ( )sin cos sin cos 0y y x x x x′′ + = − − + + = Hence ( )y x satisfies the differential 

equation. To verify that ( )y x  also satisfies the initial conditions, we observe that 
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( ) ( )0 sin 0 cos 0 1, 0 cos 0 sin 0y y′= + = = − =1 
 

1.7 General Solution of a Differential Equation 
In general case when solving an nth-order equation ( )( ), , , , 0nF x y y y′ =…  we generally 

obtain n-parameter family of solutions ( )1 2, , , 0nc c, ,G x y c =… . A solution of a 
differential equation that is free of arbitrary parameters is called a specific or particular 
solution.  
Example 5 

The function ( ) 2

3
4

cy x
x

= + is the general solution to 2 4xy y 3′ + = . From this example 

the function ( ) 2

3 9
4 4

y x
x

= − is the particular solution when applying the initial 

condition on the equation 2 4( )1y = −4 3xy y′ + =

4= −

; that is, it is the solution to the initial 

value problem .  ( )2 4 3, 1y y+ =xy′
 

Exercises 
 

Show that each function is a solution of the given differential equation. Assume that a 
and c are constants. 

1. dy ay
dx

=      axy e=  

2. xdy y e
dx

= +      xy xe=  

3. 
2

2
2 0d y a y

dx
+ =     siny c ax=    

4. 
22

2
2

1 1
4

d y dyx y
dx dx

⎛ ⎞
− + = −⎜ ⎟

⎝ ⎠
x   2y x=    

Show that the following relation defines an implicit solution of the given differential 
equation  
 5. 2' xyy e=      2 2xy e=  
 6. 22 ' 2xyy x y= +     2 2y x cx= −  
Verify that the specified function is a solution of the given initial-value problem 
 

Differential Equation Initial Condition(s) Function 
1.  ' 0y y+ = ( )0 2y =  ( ) 2 xy x e−=  

2.  2'y y= ( )0 0y =  ( ) 0y x =  

3.  " 4 0y y+ = ( ) ( )0 1 ' 0 0y y= =  ( ) cos 2y x x=  

5.  " 3 ' 2 0y y y+ + = ( ) ( )0 0 ' 0y y 1= =  ( ) 2x xy x e e− −= −  
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2 Separable Equations 
A differential equation  

( ),dy  f x y
dx

=

is called separable if it can be written as  

( ) ( )dy h x g y
dx

=  

That is, ( , )f x y factors into a function of x times a function of y . Either ( )h x or  
may be constant so that every differential equation of the form 

( )g y

( )dy h x
dx

=  or ( )dy g y
dx

=  

is separable.  
Some examples of such functions are 

( )(

2 2,
2 2 1

x y x ye e e x y x y
xy x y x x

+ = ⋅ = ⋅

+ + + = + + )2
 

33y  (Here ( ) 1h x = )  

If ( , )f x y  has been factored so that the differential equation is written as in the above 

examples, then we divide by to get ( )g y

( ) ( )1 dy h x
g y dx

=  

Next we anti-differentiate both sides with respect to x  

( ) ( )1 dy dy h x dx
g y dx

=∫ ∫  

By the chain rule dydy dx
dx

=  so
( ) ( )1 dy h x dx

g y
=∫ ∫  

 
Solution by Separation of Variables 

To solve ( ,dy )f x y
dx

= by separations of variables, we proceed by the following: 

(i). Factor ( ) ( ) ( ),f x y h x g y=  

(ii). Rewrite ( ) ( )dy dx h x g y= in differential form as 
( ) ( )1 dy h x dx

g y
=  

(iii). The solution is 
( ) ( )1 dy h x dx

g y
=∫ ∫  

 
Example1 

Solve the differential equation 2 1dy y
dx

= +  

Solution 
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Rewrite the differential equation in differential form as 

2

1 dy dx
1y

=
+

 

So that  

2

1
1

dy dx
y

=
+∫ ∫  

Then 
tanArc y x C= +  

Hence 
( )tany x C= +  

 
Example2 

Solve the initial-value problem ( ), 0 1dy x y
dx y

= − =  

In differential form we obtain 
ydy xdx= −  

So 

2 2

2 2

1 1
2 2
1 1
2 2

ydy xdx

y x C

x y C

= −

= − +

+ =

∫ ∫
 

By substitute the initial condition 0, 1x y= = into this equation gives 1
2

C = .  

Hence the implicit solution is 2 2 1x y+ = . 
 
Example3  

Solve the differential equation
3

2 6

1
2

dy x x
dx y y

+ +
=

+ +
 

Exercises for section 2 
Solve the given differential equations 

1. 2dy x x
dx

= −  6. 2dy y y
dx

= −  

7. 
2 21

dy x
dx y x

=
+

 2. 2dy y
dx x

=  

3. x ydy e
dx

+=  8.  2 2 5dy x x
dx

= − +  

4. ( )2 1x ydy
dx y

+
=  9. ( ), 0

1
dy y y
dx x

1= =
+

 

5. 3

1dy
dx x x

=
−
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10. ( )
2

, 1 0
4

dy x xy y
dx y

+
= =  

11. ( )22 , 1dyx y x y y
dx

− = = e   

12. 2 4dy y
dx

= −  

13. ( )2 2 2 2 1, 0 2dy x y y x y
dx

= + + + =  

14. 
2

2

1
4

du t
dt u

+
=

+
 

3 First Order Linear Equations 
The first order linear equation is of the form 

( ) ( ) ( )1 0
dya x a x y h x
dx

+ =  

with .  ( )1 0a x ≠
The equation can be rewritten as  

( ) ( )dy p x y g x
dx

+ =  

where ( ) ( ) ( )0 1p x a x a x= and ( ) ( ) ( )1g x h x a x= .  

We now solve the later equation. We will try to find a function ( )u x , called an 
integrating factor, such that  

( ) ( ) ( )d uydyu x p x y
dx dx

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

To find , we proceed as follows: ( )u x

 ( ) ( ) ( ) ( ) ( )u x y u x p x y u x y u x y′ ′+ = + ′  

If we assume that ( ) 0y x ≠ , we arrive at  

  ( ) ( ) ( )u x p x u x′ =

We can find a solution  by separating variables, getting  ( ) 0u x >

 ( )
( ) ( )u x

p x
u x
′

=  

  
( ) ( )

( ) ( )

ln

p x dx

u x p x dx

u x e

=

∫=

∫

we have ( ) ( ) ( )d uydyu x p x y
dx dx

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

or ( ) ( )( ) ( )u x y p x y uy ′′ + =  

but  
 ( ) ( )( ) ( ) ( )u x y p x y u x g x′ + =  
then  

 ( ) ( ) ( ) ( ) ( )uy u x g x uy u x g x dx C′ = ⇒ = +∫  
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Summary of First Order Linear Procedure 

a. Rewrite the differential equation as ( ) ( )dy p x y g x+ =
dx

 

b. Compute the integrating factor  ( )p x dx
u e∫=

c. Multiply both sides by ( )u x to get ( )d uy ug
dx

=  

d. Anti-differentiate both sides with respect to x,  
uy ug dx C= +∫  

e. If there is initial condition, use it to find C. 
f.  Solve for y.  

 
Example1 
Find all solutions of  2' ,xy y x x− = > 0
Solution 
The equation can be rewritten as 

1'y y x
x

− =  

then ( ) 1p x
x

= − . Thus 

( ) 1ln ln 1
dx

x xxu x e e e x
−− − −∫= = = =  

Multiplying each side of the differential equation by the integrating factor, we get 

( )( )
( )
( )

1

1 1

1

2

1' 1

1

x y y
x

d x y x x x
dx

x y x x C

y x x Cx

−

− −

−

⎛ ⎞− =⎜ ⎟
⎝ ⎠

= =

= +

= +

 

Example2 

Solve the initial value problem ( ) ( )3

3 sin , 0 , 2dy xy x y
dx x x

π 1+ = > =  

Solution  
Since ( ) 3p x = x , the integrating factor is  

( ) ( )3 3ln 3x dx xx e eμ ∫ x= = =  
Multiplying both sides of equations by integral factor give 

( )

3

3

3' s

sin

inx y y
x

d

x

x y x
dx

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

=

 

by integration we obtain 
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3 cosx y x C= − +  
Thus 

( ) ( )3 3

cos 0C xy x x
x x

= − >  

Since ,
2

1x yπ
= = , then

( )31
2

C
π

= , that is 
3

8
C π
=  

Hence the solution is ( ) ( )
3

3 3

cos , 0
8

xy x x
x x
π

= − >  

 
4 Bernoulli Equations 
 
A Bernoulli Equations is a first-order differential equation in the form 

( ) ( ) ndy p x y q x y
dx

+ =  (1) 

 
If  or , then the Bernoulli equation is already first order linear and can be 
solved by the method of the previous section. If 

0n = 1n =
0n ≠ and 1n ≠  then the substitution 

 will change the Bernoulli equation to a linear equation in v  and1 nv y −= x .  
 
Let , then  1 nv y −=

( )1 nv n y−′ ′= − y  or 
( )1 1

n

n

v yy
n y n−

v′ ′
′ = =

− −
 

or 

1

ndy y dv
dx n dx

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

Substituting this into (1) yields 

( ) ( )
1

n
ny dv p x y q x y

n dx
⋅ + =

−
 

By dividing both sides by ( )1ny n− and use 1 ny v− = , we obtain 

( ) ( ) ( ) (1 1dv n p x v n q x
dx

+ − = − )  

which is a linear first-order differential equation in .  v
 
Example1 

Solve the differential equation  3dy y y
dx

= +                                                 

Solution 
The equation can be rewritten as 

3dy y y
dx

− =  
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with and  3, 1n p= = − 1q =

Let 1 3 2
2

1v y y
y

− −= = = , then 
( )
( )

2

2 4 32

2 2y yy yv
y yy

′− ′ ′−′ = = = −  

So 
3

2
y vy

′−′ =  

By the substitution of  into the equation, we obtain y′
3

3

3
3

2

2

y v y y

y dv y y
dx

′−
− =

−
− =

 

Dividing both sides by 
3

2
y− gives 

2

2 2dv
dx y

+ = −  

Substitute 2

1v
y

=  in the equation we obtain 

2 2dv v
dx

+ = −  

We have ( ) 2p x =  then ( ) 2 2dx xu x e e∫= =  
Multiplication of the equation by the integral factor gives 

( )

( )

2 2

2 2

2 2

2

x x

x x

e v v e

ve e

′ + = −

′ = −
 

Anti-differentiating with respect to x gives 
2 2x xve e C= − +  

Solving for v , we obtain 
2

2
2

1 22

1
1 1

1

x

x

x

v Ce

Ce
y

y Ce

−

−

−−

= − +

= −

⎡ ⎤= ± −⎣ ⎦

 

Exercises for section 3 and 4 

1. 2 0dy y
dx

+ =  4. sindy y x
dx

+ =  

5. 2

1
1 x

dy y
dx e

+ =
+

 2. 2 3 xdy y e
dx

+ =  

6. 2dy xy x
dx

+ =  3. 3xdy y e
dx

− =  
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7. 2 23dy x y x
dx

+ =  

8. 2

1 1dy y
dx x x

+ =  

9. 2dyx y x
dx

+ =  

10. cos sin 1dyx y x
dx

+ =  

11. 22 cosdy y x x
dx x

− =  

12. ( )1 0x xdye e y
dx

+ +

13. ( )2 9 0dyx xy
dx

+ + =  

14. 22 1 xdy x y e
dx x

−+⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

15. 3'xy y xy+ =  
16. 2'y y y+ =  
17. 2' xy y y e+ =  
18. ' 6y xy x y+ =  

19. 
2'y y y−+ =

=  

Solve the initial-value problem 

20. ( )1 0dy y y
dx

− = =1 

21. ( )32 1dy xy x y
dx

+ = =1 

22. ( )33 1 4dy y x y
dx x

− = =  

23. ( )2 0dy xy x y
dx

+ = =

24. ( ) ( )1 0x xdye e y y
dx

0 1+ + = =  

25. ( )' sin ,y y x y π 1+ = =  

1  

26. ( )9 52' , 1 2y y x y y  + = − − =
x

27. ( )4' , 0y y y y 1= − =  

5 Riccati Equation 
The nonlinear differential equation  

( ) ( ) ( ) 2dy f x g x y h x y
dx

= + +  (1) 

is called Riccati equation. In order to solve a Riccati equation, one will need a particular 
solution. Let ( )0y x , then the substitution  

( ) ( )0
1y y x

w x
= +  

converts the equation to 

( ) ( ) ( ) ( )02 0dw g x h x y x w h x
dx

+ + + =⎡ ⎤⎣ ⎦  

which is a linear differential equation of first order with respect to the function ( )w w x= . 
Proof 

We have ( ) ( )0
1y y x

w x
= + . Differentiating with respect to x, yields 

0
2

1dy dy dw
dx dx w dx

= −  

Substituting y and dy
dx

into (1), yields 
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( ) ( ) ( )
2

0
0 02

1 1dy dw f x g x y h x y
dx w dx w w

1⎡ ⎤ ⎡− = + + + + ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

( ) ( ) ( ) ( ) ( ) ( )20
0 0 02 2

1 1 12dy dw 1f x g x y g x y h x y h x h x
dx w dx w w w

− = + + + + +  

( ) ( ) ( ) ( ) ( ) ( )20
0 0 02 2

1 1 2dw dy 1 1f x g x y g x y h x y h x h x
w dx dx w w w

− = − + + + + + +  

( ) ( ) ( ) ( ) ( ) ( )20
0 0 02 2

1 1 2dw dy 1 1f x g x y g x y h x y h x h x
w dx dx w w w

− = − + + + + + +  

Since ( ) ( ) ( ) 20
0

dy
0f x g x y h x y

dx
= + + , we obtain 

( ) ( ) ( )0 0
02 2

1 1 12dw dy dy g x y h x h x
w dx dx dx w w w

− = − + + + +
1  

( ) ( ) ( )02 2

1 1 1 12 0dw g x y h x h x
w dx w w w

+ + + =  

( ) ( ) ( )02 0dw g x y h x w h x
dx

+ + + =⎡ ⎤⎣ ⎦  

Example 

Solve the Riccati Equation 22dy y y
dx

= − − + , given that 0 2y = is a particular solution.  

Solution 

Substituting 12y
w

= +  converts the equation to 

3 1dw w
dx

+ = −  

which is a first order linear equation. Its integrating factor is 
3 3dx xe eμ ∫= =  

Multiplying both sides of the equation by integrating factor, yields 
3 33x xdwe w

dx
⎡ ⎤ e+ = −⎢ ⎥⎣ ⎦

 

3 3 31
3

x x xe w e dx e c= − = −∫ +  

31
3

xw ce−= − +  

Finally the general solution to the equation is  

31
3

12 xy
ce−= +

− +
 

6 Exact Equations 
 
A differential equation  

( ) ( ), ,M x y dx N x y dy 0+ =  
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is exact if there exists a function ( ),F x y such that  

( ) ( ) ( ), , ,dF x y M x y dx N x y dy= +  
 
If ( ),M x y and are continuous functions and have continuous first partial 
derivatives on some domain, then the equation is exact if and only if 

( ,N x y)

  y xM N=  

To solve the exact equation, first solve the equations xF M= and yF N= for . The 

solution is given implicitly by
( ,F x y)

( ),F x y C= , where C represents an arbitrary constant.  
 
Method for Solution of Exact Equations 

a. Write the differential equation in the form ( ) ( ), ,M x y dx N x y dy 0+ =  
b. Compute yM and xN . If y xM N≠ , the equation is not exact and this technique 

will not work. If y xM N= , the equation is exact and this technique will work.  
c. Either anti-differentiate xF M= with respect to x or yF N=  with respect to y . 

Anti-differentiating will introduce an arbitrary function of the other variable. 
d. Take the result for F from step c. and substitute for F to find the arbitrary function. 
e. The solution is ( ),F x y C= .  

Example 1 
Solve  ( ) ( )2 32 1 2 4x xy dx x y dy+ + + + = 0
Solution 
 In this problem, 2 1 2M x xy= + + and . Since2 4N x y= + 3 2y xM N x= =

y

, the 

equation is exact. Then  2 32 4+ +2 1F M x= = + ,x yxy F M x= =
 Either equation can be anti-differentiated. We shall anti-differentiate the second one: 
  ( ) ( )2 3 2 44yF F dy x y dy x y y k x= = + = + +∫ ∫ , where is the unknown 
function of

( )k x
x . We then substitute this expression for in the other equation 

in other to find
F

2 1 2xy+ +xF M x= = ( )k x . 

  
( )( )2 4

2 1 2
x y y k x

x xy
x

∂ + +
= + +

∂
 

Then  
  ( )2 2 1 2xy k x x xy′+ = + +  
or 
  and ( ) 2k x x′ = +1 ( ) 2k x x x= +  

Thus and the general solution is  ( ) 2 4 2,F x y x y y x x= + + +
2 4 2x y y x x C+ + + =  
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Example 2 

Solve 2
2

xy

xy

yey
y xe−
+′ = (The solution is ( ) 2, 2 xyF x y x e y C= + − = ) 

 
Some non-exact equations can be made exact by the following procedure. 
 
 Integrating Factor Method 
 For differential equation ( ) ( ), ,M x y dx N x y dy 0+ = , first compute  and y xM N  

1a.  If ( )y xM N N− cannot be expressed as a function of x only, then we do not 
have an integrating factor that is a function of x only. If 

( ) ( )y xM N N Q x− = is a function of x, then is an integrating 
factor.  

( ) ( )Q x
u x e dx∫=

1b. If ( )x yN M M− cannot be expressed as a function of y only, then we do not 
have an integrating factor that is a function of y only. If 

( ) ( )y xM N N R y− = is a function of y, then is an integrating 
factor.  

( ) ( )R y dy
u y e∫=

2.  Multiply ( ) ( ), ,M x y dx N x y dy 0+ = by integrating factor 

3. Solve the exact equation ( ) ( ) ( ) ( ), , , ,u x y M x y dx u x y N x y dy 0+ =  
 
Example 3 
Solve the differential equation ( ) ( )23 4 2y x dx xy dy 0+ + =  
Solution  
In this example,  
  23 4M y x= +   2N xy=  
so 6 , 2y xM y N y= = and the equation is not exact. How ever 

6 2
2

y xM N y y
N xy

2
x

− −
= =  

is a function of x. Thus there is an integrating factor 

( ) ( )
2

2ln 2dx xxu x e e x∫= = =  
Multiplying the differential equation by 2x gives the new differential equation  

( ) ( )2 2 3 33 4 2x y x dx x y dy 0+ + =  

which is exact. The solution of this equation can be found to be 3 2 4F x y x C= + =  
Exercises 
Solve the differential equation 

1. ( ) ( ) ( )3 2 22 1 3 0, 1y xy dx x y x dy y+ + + + = = 5−  

2. ( ) ( )3 32 23 0,x xe x y x dx e dy y− + = =0 1−  
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3. ( ) ( )sin cos sin 1 0y x xy x dx x x dy+ + + =

0=

0

=

 

4.  ( ) ( )3 3 4 2 24 2 3t y ty dt t y t dy− + −

5.  ( ) ( ) 0x y dx x y dy− + + =

6.  ( )2 2 3 33 2 4x y dx x y y dy+ + =

7.  ( ) ( )sin cos 2 0x y dx x y y dy+ + −

8. ( ) ( ) ( )2 3 2 23 2 3 cos 0, 0x xy y dx x xy y dy y+ + + + + = = 0  

9.  ( ) ( )sin cos 2 0xy e dx x y y dy+ + − =

10. ( )1 2ln 3 0x ydx x y dy− + + =  
Find an appropriate integrating factor for each differential equation and then solve 

16. ( )2 23 0x y x dx dy− + =  11.  ( )1 0y dx xdy+ − =

12.  ( )1 0ydx x dy+ − = 17. 2 0dx xydy− =  

13.  ( )2 2 0x y y dx xdy+ + − = 18. 22 0xydx y dy+ =  
19. 3 0ydx xdy+ =  

14.  ( )3 3 0y x y dx xdy+ + =

=15.  ( )4 2 0y x y dx xdy+ +

  
7 Homogeneous Equations 
In this section we develop a substitution technique that can sometimes be used when 
other techniques fail. Suppose that we have the differential equation 

   ( ),dy f x y
dx

=   (1)                                                                    

and the value of ( , )f x y depends only on the ratio v y x= , so that we can think of 

( , )f x y as a function of F y x ,  

   ( ) ( ) ( ),f x y F y x F v= =  
Examples of such functions are: 

  1/. ( )
( )

1 33
2 2

y xx y
x y y x

++
=

+ +
  ( ) 1 3

2
vF v
v

+
=

+
 

  2/. y xe      ( ) vF v e=  

  3/. ( )
( ) ( )

22 2

22

1
3 3

y xx y
xy y y x y x

++
=

+ +
 ( )

2

2
1
3

vF v
v v
+

=
+

  

Using , we can rewrite (1) as F
dy yF
dx x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (2) 

A differential equation in the form (1) that may be written in the form (2) is sometimes 
called homogenous. 
 Let y xv=  so that (2) becomes



Lecture Note  Ordinary Differential Equation I 

   ( ) ( )d xv
f v

dx
=  or ( )dvv x F v

dx
+ =  

which may always be solved by separation of variables (separable equation) 

   
( )
dv dx

F v v x
=

−∫ ∫  

 
There is an alternative definition of “homogeneous” that is easier to verify: 

   ( ),dy f x y
dx

=  

is homogeneous equation if  
   ( ) ( ), ,f tx ty f x y=   (3) 

for all t such that ( , )x y and ( are in the domain of ),tx ty f .  
 
 Definition 

A function ( , )f x y is said to be homogeneous of degree n in x and y if, for every k, 

 ( ) ( ), ,nf kx ky k f x y=  
where k is a real parameter.  
 

Example 1 
 (i). ( ) 2,f x y x xy= + is homogeneous of degree 2 since  

  ( ) ( ) ( )( ) ( ) ( )2 2 2 2, ,f kx ky kx kx ky k x xy k f x y= + = + =  

 (ii). ( ), x yf x y e= is homogeneous of degree zero since  

  ( ) 0, kx ky x yf kx ky e k e= =  

 (iii). is not homogeneous.  ( ) 2 2,f x y x y= + +5
  
Summary of Method for Homogeneous Equations 
(i). Verify that the equation is homogeneous.  
(ii).  Let y xv= to get ( ) ( )x dv dx v F v+ =  
(iii).  Solve the separable equation 
(iv). Let v y x= to get the answer in terms of y and x  

 
Example 2 

Solve the differential equation 2 5
2

dy x y
dx x y

− +
=

+
  

Solution 
The equation is homogeneous since 

  ( ) ( )2 5 2 5, ,
2 2

tx ty xf tx ty f x y
tx ty x y

− + − +
= = =

+ +
 

Let y xv= , the equation becomes 
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  2 5 2 5
2 2

dv x xv vv x
dx x xv v

− + − +
+ = =

+ +
 

  2

2

2 5
2
2 3 1

22
3 2

dv vx v
dx v
dv v vx vdx v

v v

− +
= −

+
− + −

= =
++ −

− +

 

By separation of variables 

  

2
2 1

3 2
4 3 1

2 1
4ln 2 3ln 1 ln

v dv dx
v v x

dv dx
v v x

v v x

+
= −

− +
⎛ ⎞− = −⎜ ⎟− −⎝ ⎠

− − − = − +

∫ ∫

∫ ∫
C

 

Taking the exponential of both sides of the last equation yields 

  ( )
( )

4ln 2 3ln 1 ln

4

3

2

1

v v Ce e

v C
xv

− − − −=

− ′
=

−

x

 

where the absolute values have been dropped by allowing C′ to take on negative or 
positive value. Let v y x=  to get 
  ( ) ( )4 32y x C y x′− = −  
Example 3 

 Solve the differential equation
4 4

3

2y xy
xy
+′ =  

( ) ( ) ( )
( )( )

( )
( ) (

4 4 4 4 4 4 4

3 34 3

22 2, ,
t y xty tx y x )f tx ty f x y

xyt xytx ty

++ +
= = = = , so the equation is 

homogeneous.  

  

( )
( )

4 4

3

4

3

2

1

xv xdvv x
dx x xv

dv vx
dx v

+
+ =

+
=

 

Separating variables yields 

( )

4 4

3

4

4

44

ln 1 ln

1
1 ln 1 ln
4

ln 1 ln
v x C

v dxdv
v x

v x

v x C

e e+ −

=
+

+ = +

+ − =

=

C  
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( )

4 4ln 1

ln

44

4
4

4

4 4

1

1

1 ,

v
C

x

C

C

C

e e
e
v e

x

v e
x

v kx k e

+

=

+
=

+
=

+ = = 4

 

But v y , then x=

  

4
4

4 4 8

1y kx
x

y x kx

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

+ =

 

Exercises 
Verify that the differential equation is homogeneous and solve it 

1. 2 2

2' xyy
x y

=
−

 6. 2
2

dy x y
dx x y

+
=

+
 

7. dy x y
dx x y

+
=

−
 2. 

2 2

' x yy
xy
+

=  

8. 
2 2

2

2
2

dy x y
dx xy y

+
=

+
 3. 

y
xdy ye

dx x
= +  

4. 2 4dy x y
dx x y

− +
=

+
 9. 

4 3

4

dy y x y
dx x

+
=   

5. 3dy x y
dx x y

− +
=

+
 10. 

2 2

2

dy y xy x
dx x

+ +
=  
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Chapter 3 

 
Ordinary Differential Equations II 

(Higher-Order) 
 

1 Second Order Nonlinear Equations 
In general, second-order nonlinear differential equations are hard to solve. This 
section will present two substitutions which allow us to solve several important 
equations of the form 

2

2 , ,d y dyf x y
dx dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

by solving two first order equations.  
 
 Case1: Dependent variable missing 
 Suppose the differential equation involves only the independent variable x and 
derivatives of the dependent variable y: 

2

2 ,d y dyf x
dx dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

then let dyv
dx

= and the equation becomes a first order equation ( ,dv )f x v
dx

= in v which 

can be solved by using previous techniques.  
 
Example 1   
Solve the initial value problem ( ) ( ) ( )2" 2 ' , 0 2, ' 0y x y y y 1= = =    
  
Solution   
Note that the dependent variable y doesn’t appear explicitly in the  
equation. Let . The initial condition 'v y= ( )' 0 1y =  is then ( )0v 1= and the 
differential equation is  

22dv xv
dx

=  

which can be solved by separation of variable.  

2 2dv xdx
v

=∫ ∫  

  or 2
1

1 x C
v

− = +        

Applying the initial condition, we obtain 1 1C = − . Then 

  2

1
1

v
x

=
−

  or  2

1
1

dy
dx x

=
−

 

  22

11 ln
1 2 1

xdy dxy dx
dx x x

+
= = = +

− −∫ ∫ C  
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where C2 is a new arbitrary constant. By the initial condition ( )0y 2=  it implies  
that  and hence the solution is 2 2C =

  
11 ln 2

2 1
x

y
x

+
= +

−
 

Example 2  

Solve the differential equation '" 0,yy x
x

0− = >  

Solution 
Again the dependent variable y is missing from the equation. Let 'v y= .  The equation 
becomes  

  0dv v
dx x

− =  

which can be considered a first order linear equation. The integrating factor is 

  ( ) ln 1
dx

xxx e e xμ
− − −∫= = =  

Multiplying the equation by the integrating factor to get  

  
'1 0v

x
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

Anti-differentiate and solve for v to obtain  
   or 1v C x= 1'y C x=  
Anti-differentiate again to find y: 

  
2

1 22
xy C C= +  

Case 2: Independent Variable Missing 

In this case the equation is of the form
2

2 ,d y dyf y
dx dx

⎛= ⎜
⎝ ⎠

⎞
⎟ ; that is, it involves 

only the dependent variable and its derivatives.   
Again let v dy dx=  to get 

  ( ,dv )f y v
dx

=          

In order to reduce this to an equation in just y and v, observe that, by the chain rule,  

  dv dv dy dv v
dx dy dx dy

= =  

Thus we can obtain 

  ( ),dvv f y
dy

= v  

which is the first-order equation in v and y.  
  
Example 3  
Solve the initial-value problem ( ) ( ) ( )3" ' , 0 1, ' 0y y y y y 2= = = −    
  
Solution  
Note that the independent variable is missing from the equation. Let  
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2

2,dy dv d yv v
dx dy dx

= =  

When , then y =1,  so0x = 2v = − ( )1v 2= − . The initial value problem becomes 

( )3 , 1 2dvv v y v
dy

= = −  

Proceed by separation of variables, assuming that 0v ≠ . 

2
1 dv ydy
v

=  

and anti-differentiate, getting 
2

1
1

2
y C

v
− = +  

Applying the initial condition, we get 1 0C = , then 
22 /v y= −  

Thus  

2

2dy
dx y

= −  

This can be solved by separation of variables. 
2 2y dy dx= −∫ ∫  

and anti-differentiation, 
3

22
3
y x C= − +  

The initial condition ( )0y =1implies 2
1
3

C =  and the final result is 

3 12
3 3
y x= − +  or ( )1/ 31 6y x= −  

Exercises 
Solve the given second-order differential equation 

6. ( )3y y1. 
2

2 3 2d y dy
dx dx

+ =  y′′ ′ ′= +   

7. ( ) ( ) ( )22 , 0 0, 0y x y y y′′ ′ ′ 1= = = −
 

2. xy y e′′ ′− =  
3.  ( ) ( )0, 0 1, 0 0y y y y′′ ′+ = = = 8. ( ) ( )2 , 0 0, 0y yy y y′′ ′ ′ 1= = = −  
4.  ( ) ( )0, 0 0, 0 1y y y y′′ ′+ = = =

5. ( ) ( ) ( ) ( )3 2 , 0 3, 0y y y y y′′ ′ ′ ′= − = =
9. 2y y y′′ ′=  
10. ( ) ( )0, 1 0, 1 1x y y y y′ ′′ ′− + = = =  1

 
 
2 Homogeneous Linear Differential Equation 
2.1  Linear Independence 
A Linear differential equation is one of the general forms 
  ( ) ( ) ( ) ( ) ( ) ( )1

1 0
n n

n na x y a x y a x y R x−
−+ + + =
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and if ( ) 0na x ≠ , it is said to be of order n. It is called homogeneous if ( ) 0R x = and  

non-homogenous if . First we focus attention on the homogeneous case and 
next the non-homogeneous one.  

( ) 0R x ≠

 
Definition 
The function ( ) ( ) ( )1 2, , , ny x y x y x… are said to be linear independent if the 
equation  

1 1 2 2 0n nC y C y C y+ + + =

1 2 0nC C C= = = =
for constants has only the trivial solution 

for all x in the interval I. Otherwise they are said to be 
linearly dependent. 

1, , nC C…

 
Example 1 
The function 1 cosy x= and 2y x= are linearly independent for the only one way we 
can have 1 cosC x C2 0x+ =

2

for all x is for and both to be 0. However, the 
functions and 

1C
2

2C

1 21, siny y= = x 3 cosy x= are linear dependent, because  

( ) ( ) ( )2
1 2 31 sin cos 2C C x C x+ + 0= 1 2 31, 2, 1C C C for = = − = − , which is not the trivial 

solution.  
Example 2  
The function 1 2, 4x xy e y e= = are linearly dependent on the interval ( ),−∞ +∞ since 

. 1 2y y− +4 4 4x xe e= − + = 0

a

 
2.2 Wronskian 

Suppose the coefficients are continuous functions of x on the interval 
and

0, , na …

na x b≤ ≤ 1 2, , ,y y … y are solutions of the homogeneous linear differential 
equation   

( ) ( ) ( ) ( ) ( )1
1 0 0n n

n na x y a x y a x y−
−+ + + =  

then the function 1 2, , , ny y … y are linearly independent on [ ],a b if and only if 
the determinant 

 

( )
( ) ( ) ( )

1 2

1 2

1 1 1
1 2

0

n

n

n n n
n

y y y
y y y

W x

y y y− − −

′ ′ ′
= ≠  

for some x on [ . The determinant is called the Wronskian function of the 

n functions on[ ] .  
],a b

,a b
Example 3 
The functions 3

1 2 3, ,x xy e y xe y e− −= = = x are solutions of a certain homogeneous 
linear differential equation with constant coefficients. Show that these solutions are 
linear independent.  
 
Solution 
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 ( ) ( )
( )

3

3 3

3

, , 1 3 16
2 9

x x x

x x x x x x

x x x

e xe e
W e xe e e x e e e

e x e e

− −

− − − −

− −

= − − =
−

x  

Hence the functions are linearly independent.  
Example 4  
The functions 1 sin 2y x= and 2 cos 2y x= are solutions of the second-order equation 

. Show that they form a linearly independent set of functions. 4y y′′ + = 0

a

 
 Theorem 

If are continuous functions of x if 0 , , na … ( ) 0na x ≠ on the interval [ ] , 
then the nth order homogeneous linear differential equation 

,a b

( ) ( ) ( ) ( ) ( )1
1 0 0n n

n na x y a x y a x y−
−+ + + =  

has n linearly independent solutions 1, , ny y… on [ ],a b and, by the proper 
choice of constants every solution of the equation can be expressed as 1, , nc … c

1 1 2 2 n nc y c y c y+ + +  
Example 5 

(a) Show that 2xy e= and 3xy e−= are solutions of 6 0y y y′′ ′+ − =  
(b) Show that 23 5 3x xy e e−= + is also a solution of this equation. 
(c) Show that 2xy xe= is not a solution. 

3 Reduction of Order 
 Theorem 

If 1y is a nontrivial solution of the nth order homogeneous linear differential 
equation  

( ) ( ) ( ) ( ) ( )1
1 0 0n n

n na x y a x y a x y−
−+ + + =  

then the substitution 2 1y y v= , followed by theq substitution , reduced 
the equation to (n-1)th order equation. 

w v′=

Example 1 
(a) Show that 1

xy e−= is a solution of 3 2y y y 0′′ ′+ + = . 
(b) Use the method of reduction of order to find a second linearly independent 

solution of this differential equation and write the general solution. 
Solution 

(a) Substituting 1 1 1, ,x xy e y e y e− −′ ′′= = − = x− into the given equation yields 

( ) ( )3 2x x xe e e− − − 0+ − + =  

which shows that 1
xy e−= is a solution of the given equationl. 

(b) Using the method of reduction of orderw, we let 2
xy ve−= ,which 

differentiated twicew, yields 
2

x xy v e ve− −′ ′= −  

2 2x x xy v e v e ve− − −′′ ′′ ′= − +  
Substituting into the given differential equation, we get 

( ) ( )2 3 2x x x x x xv e v e ve v e ve ve− − − − − −′′ ′ ′− + + − + 0=  
Expanding and collecting terms yields 
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0 orx xv e v e v v− −′′ ′ ′′ ′ 0+ = + =  
Letting , this becomes w v′=

0w w′ + =  
Separating variables on this equation yields 

ln
x

dw dx
w

Cw x

w Ce−

= −

= −

=

 

Since , it follows by taking the antiderivative of w v′= xe− that  xv ce−=
Ignoring the coefficient, a second solution is  

2
2

x x x xy ve e e e− − − −= = =  
The general solution of the given second order equation is then 

2
1 2

x xy c e c e− −= +  
Exercises 
Show that the given function is a solution of the diferential equation, use the method 
of reduction of oreder to find a second linearly independent solution, and write the  
general solution. 

1. 2
12 0;x y xy y y x′′ ′+ − = =   2. 2

14 0; xy y y e′′ − = =  
3. 14 0; cosh 2y y y′′ − = = x   4. 3

19 0; xy y y e′′ − = =  
5. 3

16 0; xy y y y e−′′ ′+ − = =   6. 14 0; sin 2y y y x′′ + = =  
7.    8.10; 1xy y y′′ ′+ = = 2 2

16 0; 1 /x y y y x′′ − = =  
9. ( ) 11 0; xx y xy y y e′′ ′− + − = =  10. 2 2

13 4 0;x y xy y y x′′ ′− + = =  

 
4 Homogeneous Linear Equation with Constant Coefficients 
 It has the general form 

( ) ( )1
1 1 0 0n n

n nb y b y b y b y−
− ′+ + + + =

0 =

 
where are real constants. The euation  0 1, , , nb b b…

1
1 1 0n n

n nb r b r b r b−
−+ + + +   

is called the characteristic or auxiliary equation associated with the given 
homogeneous linear equation with constant coefficients. 
Example 1 

(a) The auxiliary equation for 3 0y y′ − = is 3 0r − = . 
(b) The auxiliary equation for 5 7y y y 0′′ ′+ − = is 2 5 7r r 0+ − =  
(c) Equation such as do not 

have auxiliary equations since the auxiliary equation concept applies only 
to linear homogeneous equation with constant coefficients. 

2 20, 0,or 0y yy y y x x y y xy′′ ′ ′′ ′′ ′+ = + + = + + =

 
4.1 Auxiliary Equation with Distinct Real Roots 
 If the auxiliary eqution for  

( ) ( )1
1 1 0 0n n

n nb y b y b y b y−
− ′+ + + + =  

has n distinct real roots then n solutions are linearly 
independent and the general solution of the differential equation is given by 

1 2, , , nr r r… 1 2, , , nr xr x r xe e e…

1 2
1 2

nr xr x r x
ny c e c e c e= + + +  
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cwhere are arbitrary constants. 1, , nc …
Example 2 

Solve the differential equation 
3 2

3 22 9 5d y d y dy
dx dx dx

0− − =  

Solution 
 The auxiliary equation for the given differential equation is 

3 22 9 5r r r 0− − =  

 The roots of this equation are 10, ,5
2

r = − ; therefore the general solution is  
2 5

1 2 3
x xy c c e c e−= + +  

Example 3 
Solve the initial-value problem ( ) ( )3 2 0, 0 1, 0y y y y y′′ ′ ′ 2+ + = = =  
Solution 
 The auxiliary equation in this case is 

2 3 2r r 0+ + =  
 whose roots are . Therefore the general solution is 1,  and 2r = − −

2
1 2

x xy c e c e− −= +  
To find , we use the condition 1 and c 2c 0, 1x y= = in the general solution to 
obtain 

1 21 c c= +  
Differentiating the general solution yields 

2
1 22x xy c e c e− −′ = − −  

Using in this equation,  0, 2x y′= =

1 22 2c c= − −  
Solving the system for  1 2and c c

1 2

1 2

1
2 2

c c
c c

= +⎧
⎨ = − −⎩

 

we get . 1 24, 3c c= = −

Hence the solution is 24 3x xy e e− −= − . 
Exercises 
Find the general solution 

1.    3 2y y y′′ ′− + = 0
7.

2

2 4 0d y y
dx

− =  
2.

2

2 5 6d y dy y
dx dx

+ + = 0  
8.

2

2 9 0d i i
dt

− =  
3.

2

2 0d s ds
dt dt

+ =    9. 16 0y y′′′ ′− =  
10. 4 0y y′′′ ′− =  

4.
2

2 5 4d y dy y
dx dx

+ + = 0

0
0

 11. 9 8y y y 0′′′ ′′ ′+ + =  
12.3 5 2y y y 0′′′ ′′ ′+ − =  5. 2 3  y y′′ ′− =

6.3 4  y y′ − =
Find the particular solution corresponding to the given conditions.
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13. ( )
2

2
0

4 0; 0 0,
t

d s dss s
dt dt =

− = = = 2  

14. ( ) ( )2 3 0, 0 0, 0y y y y y′′ ′ ′− − = = = −4  

15. ( ) ( )0, 0 1, 0 1y y y y′′ ′− = = =  

17. ( ) ( )3 0, 0 2, 0y y y y′′ ′ ′+ = = = 6  
 

4.2 Auxiliary Equation with Repeated Real Roots 
 If the auxiliary equation for 

( ) ( )1
1 1 0 0n n

n nb y b y b y b y−
− ′+ + + + =  

has n repeated real roots 1 2 nr r r r= = = = , then the general solution is given 
by  

( )2 1
1 2 3

n r
ny c c x c x c x e−= + + + + x

c

 
where are arbitrary constants. 1, , nc …

Example 4 
Solve the equation . 0y′′′ =
Solution 

The auxiliary equation is 3 0r = which gives roots m=0,0, and 0. 
Therefore the general solution is 

2
1 2 3y c c x c x= + +  

Example 5 
Solve the equation  4 4y y y′′′ ′′ ′+ + = 0

0

Solution 
 The auxiliary equation is 

3 24 4r r r+ + =  
which has roots 0, -2, -2. Therefore the general solution is 

2 2
1 2 3

x xy c c e c xe− −= + +  
4.3 Auxiliary Equation with Complex Roots 
 If the auxiliary equation for   

( ) ( )1
1 1 0 0n n

n nb y b y b y b y−
− ′+ + + + =  

has the complex roots r a then for each such pair of roots the general 
solution contains terms of the form 

ib= ±

( )1 2cos sinaxy e c bx c bx= +  
Example 6 

Solve the equation 
3

3 4 0d s ds
dt dt

+ =  

Solution 
The auxiliary equation is 3 4 0r r+ = , which has the roots

. Therefor the general solution is 1 2 30, 2 , 2r r i r= = = − i

1 2 3cos2 sin 2y c c x c x= + +  
Example 7 
Solve the equation ( )4 8 16y y y′′+ + = 0  
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Solution 
The auxiliary equation is ( )24 2 28 16 0or 4r r r 0+ + = + = . The roots are  

1 2 3 42 , 2r r i r r= = = = − i .  Therefore the general solution is  
1 2 3 4cos 2 sin 2 cos 2 sin 2y c x c x c x x c x= + + + x

0

 
Exercises for 4.2 and 4.3 
Find the general solution of the given differential equation 

1.  8 16 0y y y′′ ′+ + =
6. 

4 2

4 2 0d s d s
dt dt

− =  2.  4 4y y y′′ ′− + =
7. ( )4 18 81 0y y y′′′ ′′+ + =  3. 2 1 0

3 9
y y y′′ ′+ + =  

8. ( )49 6y y y 0′′′ ′′+ + =  
4.  5 4y y′′ ′+ + y 9. 4 3y y y 0′′′ ′− + =  
5. ( ) ( )5 3 0y y− =  10. 3 2y y y 0′′′ ′− − =  

Solve the initial- value problem 
11. ( ) ( )8 16 0, 0 0, 0y y y y y′′ ′ ′− + = = =1 
12. ( ) ( )2 1 0, 0 1, 0y y y y′′ ′ ′− + = = = 2  
13. ( ) ( )6 9 0, 0 1, 0y y y y y′′ ′ ′− + = = =1  
14. ( ) ( ) ( )3 0, 0 3, 0 0, 0y y y y y′′′ ′′ ′ ′′+ = = = = 9

1

 
15.  ( ) ( )4 0, 0 0, 0y y y y′′ ′+ = = =

16.  ( ) ( )0, 0 0, 0 1y y y y′′ ′+ = = =

17. ( ) ( )4 5 0, 0 1, 0y y y y y′′ ′ ′+ + = = = 0  
18. ( ) ( )6 10 0, 0 2, 0y y y y′′ ′ ′− + = = =1  

 
5 Non-homogeneous Linear Differential Equation with constant 

Coefficients 
 
The nth-oder nonhomogeneous linear differential equation can be expressed in the 
form 

( ) ( ) ( ) ( ) ( ) ( )1
1 0

n n
n na x y a x y a x y f x−

−+ + + =  

( ) ( ) and a x f x a x bare not identically zero on some interval ≤where ≤

( )
.  The 

function f x

py

x

is often called the driving function of the equation.  
 
Any function that is free of arbitrary constants and satisfies the equation is called a 
particular solution of the equation. 
Example 1 

(a) is a particular solution of 5py = 5y y′′ ′+ =  

(b) 32 x
py e= is a particular solution of 32 8 xy y y e′′ ′− + =  

 
Associated with the equation  

( ) ( ) ( ) ( ) ( ) ( )1
1 0

n n
n na x y a x y a x y f x−

−+ + + =
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is the homogeneous linear differential equation  
( ) ( ) ( ) ( ) ( )1 0n na x y a x y a x y−+ + +1 0n n− =

x

 
which is called the corresponding homogeneous equation. 
 
Example 2 

(a) The corresponding homogeneous equation for 2 3 siny y y′′ ′− − = is 
. 2 3y y y′′ ′− − = 0

(b) The corresponding homogeneous equation for 25y y′′ + = is  0y y′′ + =
 
The general solution of the corresponding homogeneous equation, denoted by cy is 
called the complementary solution of the nonhomogeneous equation.  
 
Let be any particular solution of the nth-order constant-coefficient linear 
differential equation 

py

( ) ( ) ( )1
1 1 0

n n
n nb y b y b y b y f x−

− ′+ + + + =  ( ) 
and let cy be the general solution of the corresponding homogeneous equation  

( ) ( )1
1 1 0 0n n

n nb y b y b y b y−
− ′+ + + + =  

Then the general solution of the equation ( ) is c py y y= + .  
 
5.1 Using the Method of Reduction of Order to Find a Particular Solution  
Example 3 
Solve the differential equation 32 xy y y e′′ ′+ + = using the method of reduction of 
order to find a . py
Solution 

The corresponding homogeneous equation is " 2 0y y y′+ + = . The auxiliary 
exquation is , which has repeated roots -1,-1, yields the 
complementary solution  

2 2 1 0r r+ + =

1 2
x x

cy c e c xe− −= +  
To find by reduction of order, we let py 1py vy= , where 1y is any particular 
solution of the corresponding homogeneous equation. Here we choose 

1
xy e−= . Thus,  

2

x
p

x x
p

x x x
p

y ve

y v e ve

y v e v e ve

−

− −

− − −

=

′ ′= −

′′ ′′ ′= − +

 

Substituting into the given equation, we get 
( ) ( ) 32 2x x x x x xv e v e ve v e ve ve e− − − − − −′′ ′ ′− + + − + = x

x

 
This reduces to 

3 4 or x xv e e v e−′′ ′′= =  
whence 

41
16

xv e=  
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(Note: We omit the arbitrary constants because we’re finding a particular 
solution) 

x
py ve−Substitute the value of v in = , a particular solution of the given 

differential equation is 
4 31 1

16 16
x x x

py e e−= = e  

Finally, the general solution is 
3

1 2
1

16
x x x

c py y y c e c xe e− −= + = + +  

Example 4 
Solve the differential equation 2 3y y x′′ ′+ =  using the method of reduction of order to 
find a . Answer: py 2 23 3

1 2 4 4
xy c c e x x−= + + − .  

Exercises  
Determine the complementary Solution of the homogeneous equation 

1. 3 2 12 xy y y e′′ ′+ + =  5. 4 xy y e−′′ + =  
2.  2 8y y y′′ ′+ − = 6. 16 2sin 3y y x′′ + =  4

23.  6 9 9y y y x′′ ′+ + = +
4. 24 4 5 xy y y x e−′′ ′− + = +  
7. Verify that 2 x

py = e is a particular solution of 3 2 12 xy y y e′′ ′+ + = and then 
find the general solution. 

8. Verify that 4
9py x= − is a particular solution of 6 9 9y y y x 2′′ ′+ + = + and then 

find the general solution. 

9. Verify that 1
5

x
py e−= is a particular solution of 4 xy y e−′′ + = and then find the 

general solution. 

10. Verify that 2 sin 3
7py = x xis a particular solution of 16 2sin 3y y′′ + = and then 

find the general solution. 
Find the general solution of the differential equations. In determining , use the 
method of reduction of order 

py

11.  4 3y y′′ − = 16. 24 xy y e′′ ′+ =  
12.  y y′′ − = x 17. siny y x′′ ′− =  
13. 24 4 xy y y e−′′ ′+ + =  18. 3xy y e′′ − =  
14. 3 xy y e′′ ′+ =  19. 6 5y y y′′ ′− − =  
15.  3 2 2y y y′′ ′+ + = 20. y y x′′ ′+ =  5

 
5.2 Method of undetermined coefficients 
We use this method to find a particular solution  of the constant-coefficient 
nonhomogeneou linear equation 

py

( ) ( ) ( )1
1 1 0

n n
n nb y b y b y b y f x−

− ′+ + + + =  

If ( )f x is an mth-degree polynomial ( )p x , we assume 

   ( )0 1
k m

p my x A A x A x= + + +

where is the multiplicity of the root 0 of the auxiliary equation. k
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Example 5 
Find the general solution of . 2" 3 ' 2 1y y x− = +

0
Solution 

The characteristic equation is 2 3r r− = has the roots 1 0r = and .Hence  2 3r =
0 3

1 2 1 2
3x x x

cy c e c e c c e= + = +  
Here ( ) 22f x x 1= + , 0 is a root of the multiplicity 1, so 1k = . 

Thus  ( )2 2
1 2 0 1 2p oy x A A x A x A x A x A x= + + = + + 3

x

2
0 1 22 3py A A x A x′ = + +  

1 22 6py A A′′ = +  
Substituting these into the Eq. gives 

  
( )2 2

1 2 0 1 2

2 2
1 2 0 1 2

2 6 3 2 3 2

2 6 3 6 9 2

A A x A A x A x x

A A x A A x A x x

+ − + + =

+ − − − =

1

1

+

+

0

 Equating coefficients of like powers of x,  

   
1 0

2 1
2

2

1: 2 3 1
: 6 6

: 9 2

A A
x A A

x A

− =
− =

− =

We get 2 1 0
2 2, ,
9 9

A A A= − = − = −
13
27

. Thus the particular solution is  

2 313 2 2
27 9 9py x x= − − − x  

and the general solution is 
2 3

1 2
13 2 2
27 9 9

3x
p cy y y x x x c c e= + = − − − + +  

If ( )f x is of the form of xEeα , then has the form of py k xx Aeα , where k is 
the multiplicity of the root α of the auxiliary equation.  

  
Example 6 
 Find the general solution of 25 6 4 xy y y e′′ ′− − =  
Solution 

The related homogeneous equation is 5 6y y y 0′′ ′− − =
6, 1

. The characteristic 
equation is and has roots2 5 6r r− − = 0 − . Thus, 6

1 2
x xy c e c e−= +c . Here 

2α =  so 0k = since 2 is not a root of characteristic equation.  
Thus we assign 2x

py Ae= . Substituting this into the equation gives, 

  ( ) ( ) ( )2 2 25 6 24x x xAe Ae Ae e′′ ′− − = x

2

 

  
2 2 2

2 2

4 10 6 4
12 4

x x x x

x x

Ae Ae Ae e
Ae e

− − =

− =
 

  So 1
3

A = − . Thus 21
3

x
py = − e . Hence, the general solution is  

  2 6
1 2

1
3

x x x
p cy y y e c e c e−= + = − + +  
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Case3: If ( )f x has the form of ( ) xp x eα  ( )p x is an mth-degree polynomial, 

then is assigned to be py ( )k m
0 1

x
mx A A x A x eα+ + + where k is the 

multiplicity of the root α of the auxiliary equation. 
 
Example 7 
 Write the form of , given that py 3 2x xy y x x e xe′′ ′− = + + −  
Solution 
The characteristic equation is 2 0r r− = which has the roots . So0, 1 1 2

x
cy c c e= + . 

Here ( ) ( ) (3 1 2 ) xf x x x= + + −

( 2
0 1 2

k

x e

3
3

. The first term is a third-degree polynomial. Since 0 
is a root of multiplicity 1 of the characteristic equation, must include a term of the 

form 
py

)x A A x A x+ + + A x kwith 1= .The second term is the form ( ) xp x eα

where ( ) 1 2p x x= − is the first-degree polynomial and 1α = which is also the root of 
the characteristic equation. So must also include a term of the form py

( )4 5
k xx A A x e+ 1k =with . So has the form  py

  ( ) ( )2 3
0 1 2 3 4 5

x
py x A A x A x A x x A A x e= + + + + +  

Example 8 
Give the form for  if py 2 7 xy y y xe′′ ′− + =  is to be solved by the method of 
undetermined coefficients.  
Solution 
The characteristic equation is which has root 1 of multiplicity 2. Thus 2 2 1 0r r− + =

1 2
x x

cy c e c xe= + . 
Here ( )f x has the form ( ) xp x eα where ( ) 7p x x= is a first-degree polynomial and

1α = . Since 1α = is a root of multiplicity 2, we obtain 2k = . So the form for is  py

 ( )2
0 1

xx A A x e+  

Case 4:  If ( ) 1 2cos sinf x E x E xβ β= +

py

, where at least one of the constants 

is nonzero, then has the form 1 2,E E ( )0 0cos sinkx A x B xβ β+ where is 
the multiplicity of 

k
iβ as a root of the auxiliary equation.  

 
Example 9 
Write the form of , if py 2 2 3 4cosxy y y e−′′ ′+ + = + x

0

is to be solved by the method of 
undetermined coefficient.  
Solution  
The characteristic equation is with the roots2 2 2r r+ + = 1r i= − ± .  
Thus  
   1 2cos sinx x

hy c e x c e− −= + x
Here ( ) 3 4cosxf x e−= + x . Consider the first term3 xe− . Since 1α = − is not the root of 
the characteristic equation, by case 2, we have 0k = . So includes a term ofpy 1

xA e− .  
Now consider the second term 4cos x . Since i is not a root of the characteristic 
equation, k=0. Hence includes terms of the formpy 2 3 sinAcosA x x+  
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Thus , where are constants to be determined. 1 2 3cos sinx
py A e A x A−= + + x

x

1 2 3, ,A A A
 
Example 10 
Give the form for if is to be solved by the method of undetermined 
coefficients.  

py 4 sin 2y y′′ + =

Solution 
The characteristic equation is 2 4 0r + = with the roots 2i± .  
So 1 2cos 2 sin 2hy c x c= + x ( ) sin 2. f x = x , that is 2β = . Since is a roots of the 
characteristic equation of multiplicity 1, we have

2i
1k = . 

 Hence  
( )0 0cos 2 sin 2py x A x B x= +  

 
Case 5: If ( ) ( ) ( )sin cosf x p x x q x xβ β= + , where ( )p x is an mth-degree 

polynomial in x  and ( )q x is an nth-degree polynomial in x , then  

  ( ) ( )0 1 0 1cos sink s
p s s

sy x A A x A x x B B x B x xβ β⎡ ⎤= + + + + + + +⎣ ⎦  

where is the multiplicity of k iβ as a root of the auxiliary polynomial and  
is the larger of .  

s
,m n

 
Example 11 
 Give the form for if py 24 cos 2 sin 2 sin 2y y x x x x x′′ + = − + is to be solved by the 
method of undetermined coefficients. 
Solution  
The characteristic equation is 2 4 0r + = which has the roots 2i± .  
So  
  1 2cos 2 sin 2hy c x c x= + . 
Here ( ) ( )2 2cos 2 sin 2 sin 2 cos 2 1 sin 2f x x x x x x x x x= − + = + − x , that is, it has the 
form of 
  ( ) ( )cos sinp x x q x xβ β+  

where ( ) 2p x x=  is a second-degree polynomial and ( ) 1q x x= − is a 1stdegree 
polynomial, and 2β = . Since is a root of the characteristic equation of multiplicity 
1, we obtain . Hence 

2i
1k =

  ( ) ( )2 2
1 2 3 4 5 6cos 2 sin 2py x A A x A x x A A x A x x⎡ ⎤= + + + + +⎣ ⎦  

 
Case 6: If ( ) 1 2cos sinx xf x E e x E eα α xβ β= + , where are constants at 
least one of which is nonzero, then 

1 2,E E

  0 0cos sink x x
py x A e x B e xα αβ β⎡ ⎤= +⎣ ⎦  

where is the multiplicity of k iα β+ as a root of the auxiliary polynomial.  
 
Example 12 
 Give the form for ifpy 2 2 5 cosxy y y x−′′ ′+ + = x is to be solved by the method of 
undetermined coefficients. 
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0
Solution 
The roots of the characteristic equation 2 2 2r r+ + = are 1 i− ± . So  
   1 2cos sinx x

hy c e x c e− −= + x
Here ( ) 5 cosxf x e−= x xwhich is of the form cosxeα β , where 1, 1α β= − =

k =
. Since 

 is a root of the characteristic equation of multiplicity 1, we obtain . Thus 1− + i 1
  .  ( )0 0cos sinx x

py x A e x B e x− −= +

We can summary the 6 cases as in the table below: 

( )fIf x py

k

is of the form then includes 

is the 
multiplicity 
of the root 

1. ( )p x , an mth-degree          
    polynomial 

( )0 1
k m

mx A A x A x+ + +  0 

2. xEeα  k xx Aeα  α  
3. ( ) xp x eα , ( )p x is an  
    mth-degree polynomial 

( )0 1
k m x

mx A A x A x eα+ + +  α  

4. 1 2cos sinE x E ( )0 0cos sinkx A x B xxβ β+  β β+ i β  

5. ( ) ( )cos sinp x x q x xβ β

( )
+  

    where p x

( )q x

is an mth-degree   

    polynomial and is nth-   
    degree polynomial 

( )k

( )
0 1

0 1

cos

sin

s
s

k s
s

x A A x A x x+ β

x B B x B x xβ

+ + +

+ + +
i

 

s is larger of m, n 
β  

6. 1 2cos sinx xE e x E eα α (xβ β+  )0 0cos sink xe A x B xαx β β+ i α β+  

Example 13 
Give the form for ifpy 2 2 cos 2 sin 2 3cosx x xy y y e x e x e− − −′′ ′+ + = + + − x

0

 
is to be solved by undetermined coefficients 
 
Solution 
The characteristic equation is 2 2 2r r+ + = which has roots 1 i− ±  
Here ( )f x is the some of 3 groups of terms 
  : since cos 2 sin 2x xe x e− −+ x 1 2i− + is not a root, we include  

0 0cos 2 sin 2x xA e x B e− −+ x (by case 6) 
                               xe− : Since 1− is not a root, we include 2

xA e−  
                                 3cos x−  : since i is not a root, we include  
     1 1cos sinA x B x+  
Hence 
 0 0 1 1cos 2 sin 2 cos sin 2

x x x
py A e x B e x A x B x A e− −= + + + + −

 
Exercises for 5.2
1. Consider the differential equation ( )2y y y f′′′ ′′ ′+ + = x

( )
. Determine the to be 

used if 
py

f x

2x +

equals each of the following: 
(g) sinh coshx x+  (a) x (d) xe−  
(h) ( )1 xx e−+  (b)  (e) x−  xe

(c) sin x x+  (f) sinh x  
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Solve the following equations 
2. 4 4 xy y y e′′ ′− + =  
3.  4 4 xy y y e′′ ′− + = +1
4. 24 4 xy y y e′′ ′− + =  
5.  4 4 siny y y′′ ′− + = x
6. 2 24 4 x xy y y xe e′′ ′− + = +  
7. 24 4 xy y y xe′′ ′− + =  
8.  sin 2y y x′′ + =

9. 4 sin 2y y x′′ + =  
10. 4 sin 2y y x′′ ′+ =  
11. 2 5 sin 2y y y x′′ ′− + =  
12. 2 5 cos 2xy y y e′′ ′− + = x

x
 

13. 3 2 sin 2y y y′′′ ′− − =  
14. 1y y′′′ ′′+ =  

 
5.3 Variations of Parameters 
This method can be used to seek for the particular solution of nth-order equation 

( ) ( ) ( ) ( ) ( ) ( )1
1 0

n n
n na x y a x y a x y f x−

−+ + + = where 1 2, , , ny y … y are n linearly 
independent solution of the homogeneous equation are known, we seek a solution of 
the form ( ) ( ) ( ) ( ) ( ) ( )x1 1 2 2p ny v x y x v x y x= + + n

)
v x y+  

To find , first solve the following linear equations simultaneously for : ( 1,...,iv i n= iv′

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

2 2 2
1 1 2 2

1 1 1
1 1 2 2

0
0

0

n n

n n

n n n
n n

n n n
n n n

v y v y v y
v y v y v y

v y v y v y

v y v y v y f x a x

− − −

− − −

′ ′ ′+ + + =⎧
⎪ ′ ′ ′ ′ ′ ′+ + + =⎪
⎪
⎨
⎪ ′ ′ ′+ + + =
⎪
⎪ ′ ′ ′+ + + =⎩

 

 
Then integrate each to obtain , disregarding all constants of integration. This is 
permissible because we are seeking only one particular solution.  

iv′ iv

 
Example 14 
 1. For the special case , the system reduces to 1n =

( ) ( )  1 1 1v y f x a x′ =

( ) ( )

 
 2. For the case n=2, it becomes 

  1 1 2 2

1 1 2 2 2

0v y v y
v y v y f x a x
′ ′+ =⎧

⎨ ′ ′ ′ ′+ =⎩

( ) ( )

 

 3. For the case n=3: 

  
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3 3

0
0

v y v y v y
v y v y v y
v y v y v y f x a x

′ ′ ′⎧ + + =
⎪ ′ ′ ′ ′ ′ ′+ + =⎨
⎪ ′ ′′ ′ ′′ ′ ′′+ + =⎩

( )

 

 
Scope of the Method 
The method of variation of parameters can be applied to all linear differential 
equation. It is therefore more powerful than the method of undetermined coefficients, 
which is restricted to linear differential equations with constant coefficients and 
particular forms of f x . Nonetheless, in those cases where both methods are 
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applicable, the method of undetermined coefficients is usually the more efficient and, 
hence, preferable.  
 
As a practical matter, the integration for iv′may be impossible to perform. In such an 
event, other methods must be employed.  
 
Example 15  

Solve 2
xey y y
x

′′ ′− + =  

Solution 
Here n=2 and 1 2

x x
cy c e c xe= + ; and hence 1 2

x x
py v e v xe= +  

Since 1 2,x xy e y xe= = and ( ) xf x e x= , it follows that  

  
( )

1 2

1 1

0x x

x
x x x

v e v xe

ev e v e xe
x

⎧ ′ ′+ =
⎪
⎨
′ ′+ + =⎪

⎩

 

By solving the system, we obtain 1 1v′ = − and 2 1v x′ = . Thus,  

  1 1v v dx dx′= = − =∫ ∫ x− 2 2 lndxv v dx x
x

′= = =∫ ∫  

Hence is lnx x
py xe xe x= − + . The general solution is therefore 

  1 2

1 3 3 2

ln

ln , ( 1)

x x x x
c p

x x x

y y y c e c xe xe xe x

c e c xe xe x c c

= + = + − +

= + + = −
 

 
Example 16 
Solve xy y e′′′ ′′− =  using the method of variation of parameters. 
Solution 
The characteristic equation is 3 2 0r r− =  with roots 0, 0 and 1. Hence homogeneous 
solution is 1 2 3

x
cy c c x c= + + e , implying that  

  1 1 2 2 3 3py v y v y v y= + +  
 So we have, here,  
  1 2 31, , xy y x y e= = = and ( ) xf x e=  
Thus we must solve the system below for 1 2 3, ,v v v′ ′ ′  

  
1 2 3

1 2 3

1 2 3

1 0

0 1

0 0

x

x 0
x x

v v x v e

v v v e

v v v e

′ ′ ′⋅ + + =

′ ′ ′⋅ + ⋅ + =

′ ′ ′⋅ + ⋅ + = e

 

 From the system, we obtain  
  3 2 11, ,x x xv v e v xe′ ′ ′ e= = − = −  
It implies that  
 3 2 1, , 2x x xv x v e v xe e= = − = −  
Therefore 
 ( ) ( ) ( )1 1 2 2 3 3 2 1 2x x x x x

p
xy v y v y v y xe e e x x e xe e= + + = − + − + = −  
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1 2 4 4 3

The general solution is  

 1 2 32

, ( 2)

x x x
p c

x x

y y y xe e c c x c e

c c x xe c e c c

= + = − + + +

= + + + = −
 

Exercises for 5.3 
Solve the following equation using the method of variation of parameters 

1. 22 xy y y e′′ ′− − =  
7. 

2

4 4
xey y y

x
′′ ′− + =  

2. 2
xey y y

x

−

′′ ′+ + =  
8. 

3

26 9
1

xey y y
x

−

′′ ′+ + =
+

 
3.  4 tan 2y y′′ + = x

9. 2 lx ny y y e−′′ ′+ + = x  4. 24 tan 2y y x′′ + =  

10. 32
xey y y

x

−

′′ ′+ + =  5. 24 sin 2y y x′′ + =  
6. ( )3 2 cos xy y y e−′′ ′− + =  
11. Verify that x and 1/x are solutions to the differential equation 

on ( . Solve the equation 2 0x y xy y′′ ′+ − = )0,∞ 2 2 lnx y xy y x′′ ′+ − = x  

12. Use exercise 11 to solve the equation 2 2x y xy y x′′ ′+ − =  
13. Verify that 1y x= and 2 lny x x= are solution of the corresponding 

homogeneous equation of 2x y 1xy y
x

′′ ′− + = and then solve the differential 

equation. 
14. Verify that x and e are solution to x ( )1 x y xy y′′ ′ 0− + − = on ( )1,∞ . Solve the 

equation ( ) ( )21 1 xx y xy y x e−′′− + ′ − = − . 
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Chapter 5 

 
Linear System of ODEs 

 
In some situation, we are required to find the function 

( ) ( ) ( )1 1 2 2, , , n ny y x y y x y y x= = =… that satisfy a system of differential equations 
containing the variable x, the unknown functions 1 2, , , ny y … y and their derivatives.  
 
Consider the system of first order differential equations 

  

( )

( )

( )

1
1 1 2

2
2 1 2

1 2

, , , ,

, , , ,

........................................

, , , ,

n

n

n
n n

dy f x y y y
dx
dy f x y y y
dx

dy f x y y y
dx

⎧ =⎪
⎪
⎪ =⎪
⎨
⎪
⎪
⎪ =⎪⎩

…

…

…

  (1) 

where 1 2, , , ny y … y are unknown functions and x is a variable. Such a system, to be 
solved by first derivative, is called a normal system. 
Solving the system is to determine the function 1 2, , , ny y … y satisfying (1) and the 
initial conditions  

( ) ( ) ( )1 0 10 2 0 20 0 0, , , n ny x y y x y y x y= = … =   (2) 
if there exist. 
 
Now let solve the system (1).  
 
Differentiate the first equation of the system (1) with respect to x we obtain 

  
2

1 1 1 1 1
2

1

n

n

dyd y f f dy f
dx x y dx y dx

∂ ∂ ∂
= + + +
∂ ∂ ∂

 

Replacing derivatives 1 2, , , ndydy dy
dx dx dx

by the expressions 1 2, , , nf f … f from (1), we 

obtain the equation  

  ( )
2

1
2 1 22 , , , , n

d y F x y y y
dx

= …  

Differentiating the equation obtained and following the above procedure to get 

  

( )

( )

3
1

3 1 23

1
1 2

, , , ,

.........................................

, , , ,

n

n

n nn

d y F x y y y
dx

d y F x y y y
dx

=

=

…

…

 

 
Hence we obtain the following system 
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( )

( )

( )

1
1 1 2

2
1

2 1 22

1
1 2

, , , ,

, , , ,

..........................................

, , , ,

n

n

n

n nn

dy f x y y y
dx
d y F x y y y
dx

d y F x y y y
dx

⎧ =⎪
⎪
⎪ =⎪
⎨
⎪
⎪
⎪ =⎪⎩

…

…

…

  (3) 

 
Suppose we can obtain 2 3, , , ny y … y in functions of 1, ,x y and the derivative 

2 1
1 1 1

12, , ,
n

n

dy d y d y
dx dx dx

−

−…  as follows 

    (4) 

( )( )
( )( )

( )( )

1
2 2 1 1 1

1
3 3 1 1 1

1
1 1 1

, , , ,

, , , ,

.........................................

, , , ,

n

n

n
n n

y x y y y

y x y y y

y x y y y

ϕ

ϕ

ϕ

−

−

−

⎧ ′=
⎪
⎪ ′=⎪
⎨
⎪
⎪

′=⎪⎩

…

…

…

Substituting these expressions in the last equation in (3) we obtain 

  ( )( )11
1 1 1, , , ,

n
n

n

d y x y y y
dx

φ −′= …   (5) 

We can find 1y by solving (5) 
  (1 1 1 1 2, , , , n )y x C C Cψ= …   (6) 

Differentiating this expression ( 1n )− times with respect to x, we will find  

  
2 1

1 1
2 1, , ,

n

n

dy d y d y
dx dx dx

−
1

−  

as function of 1 2, , , , nx C C C… .  
 
By substituting these functions into (4), we can determine 2 3, , , ny y y…  

  
( )

( )

2 2 1 2

1 2

, , ,
......................................

, , , ,

n

n n n

y x C C C

y x C C C

ψ

ψ

=

=

…

…
  (7) 

 
Example: Solve the system 

  
( )

( )4 3 2

dy y z x a
dx
dz y z x b
dx

⎧ = + +⎪⎪
⎨
⎪ = − − +
⎪⎩

 

with the initial condition ( ) ( )0 1 and 0 0y z= =  
 
Solution: 
First differentiate the first equation with respect to x to obtain  
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2

2 1d y dy dz
dx dx dx

= + +  

Substitute  and dy dz
dx dx

from (a) and (b) into this above expression we obtain 

  ( ) ( )
2

2 4 3 2d y y z x y z x
dx

= + + + − − + +1  

  
2

2 3 2 3d y 1y z x
dx

= − − + +  (c) 

From equation (a), we have dyz y
dx

= − − x  (d) 

The substitution of this expression into (c) gives 

  
2

2 3 2 3d y dyy y x
dx dx

⎛ ⎞= − − − − + +⎜ ⎟
⎝ ⎠

1x  

  
2

2 2 5d y dy 1y x
dx dx

+ + = +  (e) 

We find the general solution of (e) as 
  ( )1 2 5xy c C x e x−= + + −9  (f) 
and we can also find  
  ( )2 1 22 2 6 1xz C C C x e x−= − − − + 4  (g) 

Now, by applying initial conditions ( ) ( )0 1 and 0 0y z= = , we will find . 1 2 and C C

 Since ( )0y 1= , then from (f) we obtain 11 C 9= − , implying that  1 10C =

and , then from (g) we obtain ( )0 0z = 2 10 2C C 14= − + , 2 6C =  
Hence, the solution is given by  
  ( )10 6 5 9xy x e x−= + + − , ( )14 12 6 14xz x e− x= − − − +  
 
Example: Solve the system 

  

dx y z
dt
dy x z
dt
dz x y
dt

⎧ = +⎪
⎪
⎪ = +⎨
⎪
⎪ = +⎪⎩

 

Solution: 
Differentiating the first equation give 

  
2

2

d x dy dz
dt dt dt

= +  

Then we obtain  

  
2

2

d x x z x y
dt

= + + +  

or 

  
2

2 2d x x y z
dt

= + +  
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From the equation dx y z
dt

= + , we can obtain dxz
dt

y= − , then  
2

2

2

2

2

2 0

d x dxx y y
dt dt
d x dx x
dt dt

= + + −

− − =
 

This equation gives the general solution 2
1 2

t tx C e C e−= + . From this, we get  

  2
1 22t tdx C e C e

dt
−= − +  

From the third equation we have 2
1 22t tdxy x C e C e z

dt
−= − = − + −  

Substituting x and y into the third equation we get 

  2
23 tdz z C e

dt
+ =  

which has the solution  
   2

3 2
t tz C e C e−= +

Thus, ( ) ( )2 2
1 2 3 2 1 32t t t t t 2

2
ty C e C e C e C e C C e C e− − −= − + − + = − + +  

Therefore, the general solution is give as 

  ( )

2
1 2

2
1 3 2

2
3 2

t t

t t

t t

x C e C e

y C C e C e

z C e C e

−

−

−

⎧ = +
⎪

= − + +⎨
⎪

= +⎩

 

Exercises 
Solve the following systems 

6. 
1 1

2 1 2

5 4
2

2y y y
y y y
′ = −

 
′ = +1. 

2
1 2

2 24
y y x
y y x
′ − =
′ + =

  

7. 
31 2

1 2

y y
y y x
′ ′+ =
′ ′− =

 2. 
1 2

2 1

y y
y y=

′ =
′

  

8. 
1 2 1

2 1 1
y y
y y
′ = +
′ = −

 3. 
221 1

2 1 2

3
5

y y y
y y y
′ = +
′ = −

  

9. 
2

1 2

2 12
y y x
y y x
′ − =
′ + =

 4. 
21 1

2 1

4 3y y y
 

y y
′ = +
′ =

5. 
21 1

2 13 2

y y y
y y y
′ = +
′ = −

 10. 
1 2

1 1 2 2

1
0

y y
y y y y
′ ′+ =
′ ′+ + − =
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