
Lecture Note  Functions, Limit and continuity of function   

 

Functions, Limit,  
And Continuity 

 
1. Definition of a function 
A function is a rule of correspondence that associates with each object x in one set called 
the domain, a single value ( )f x from a second set. The set of all values so obtained is 
called the range of the function.  
 

•
•

•

•

•

•

•

f 
 
 
 
 
 
 RangeDomain  
For a real function f we can define as follow 

  ( )
:f

x y f x
→

=
 

x can be called the independent variable and y the dependent variable. The domain of 
the function f, commonly denoted by fD is defined by 

 ( ){ }, such thatfD x y y f x= ∀ ∈ ∃ ∈ =  
Example:  

1. ( ) 1f x
x

=  is defined for 0x ≠ . Hence, { }0fD = −  

 2. ( ) 2 1f x x= − is defined for 1x ≥ and 1x ≤ − . Hence, ( ] [ ), 1 1,fD = −∞ − ∪ +∞  

 3. ( ) 21f x = − x is defined for 1 1x− ≤ ≤  
 
2. Composition of Functions 
  
  x ( )f x ( )( )g f xf g

g f 
 
If f works on x to produce ( )f x  and works on g ( )f x to produce ( )( )g f x , we say that 
we have composed g with f.  The resulting function, called the composition of g with f, is 
denoted by . Thus, g f ( )( ) ( )( )x f x=g f g  

Example: Given the function ( ) ( ) ( )3 2,f x x g x= − = x . Find and g f f g  
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Solution 

  ( )( ) ( )( ) 3xg f x g f x
2
−

= =  

  ( )( ) ( )( ) 3
2

xf g x f g x −
= =  

Example: Write the function ( ) ( )55p x x= + as a composite function  g f
Solution:  
The most obvious way to decompose p is to write ( ) ( )( )p x g f x= , where , and 

 

( ) 5g x x=

( ) 2f x x= +
 
3. Inverse Functions  
 Inverse Function 
 Let f be a function with domain D and range R.  Then the function 1f − with 
domain R and range D is the inverse of f if 
 ( )( )1f f x x− = for all x in D 
and  
 ( )( )1f f y− y=  for all y in R. 

 Example: Let ( ) 2 3f x x= − . Find 1f − if it exists.  
 Solution:  
  To find 1f − , let ( )y f x= , then interchange the x and y variables, and 
finally solve for y.  

  , then 2y x= −3 32x y= − , implying (1 3
2

y x )= + , hence ( )1 1 3
2

f x− = +  

  
 Criteria For Existence of An Inverse 1f −  
 A function f will have an inverse 1f − on the interval I when there is exactly one 
number in the domain associated with each number in the range. That is, 1f − exists if 
( )1f x and ( )2f x are equal only when 1 2x x= . A function with this property is said to be 

one-to-one function.  
Horizontal Line Test 

 A function f has an inverse iff no horizontal line intersects the graph of 
( )y f x= at more than one point.  

 
A function is called to be strictly monotonic on the interval I if it is strictly increasing or 
strictly decreasing on that interval.  
 Strictly increasing on I: For ( ) (1 2 1 2 1 2, such that )x x I x x f x f x∈ < ⇒ <  

 Strictly decreasing on I: For ( ) (1 2 1 2 1 2, such that )x x I x x f x f x∈ < ⇒ >  
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Theorem 
 Let f be a function that is strictly monotonic on an interval I. Then 1f −  exists and 
is monotonic on I.  
 Graph of 1f −  
 If 1f − exists, its graph may be obtained by reflecting the graph of f in the 
line y x= .  
4. Inverse Trigonometric Functions 
 Inverse Sine Function 

 1sin sin  and 
2 2

y x x y yπ π−= ⇔ = − ≤ ≤  

 The function 1sin x− is sometimes written as arcsin x .  
 Inverse Tangent Function 

 1tan tan and 
2 2

y x x x xπ π−= ⇔ = − < <  

 The function 1tan x− is sometimes written as arctan x  
 
  Definition of Inverse Trigonometric Function 

Inverse Function Domain Range 
1siny x−= 1 1 x− ≤ ≤  

2 2
yπ π  − ≤ ≤

1cosy x−= 1 1 x≤ ≤ 0 y − π≤  ≤

1tany x−=  x−∞ < < +∞  
2 2

yπ π
− < <  

1cscy x−= 1or 1x x≥ ≤ − , 0
2 2

y yπ π
− ≤ ≤ ≠  

1secy x−= 1or 1x x≥ ≤ − 0 ,
2

y y ππ≤ ≤ ≠  

1coty x−=  x∞ < < +∞ 0 y < π<  −
 
 Example: Evaluate the given function 
   

 a. 1 2sin
2

− ⎛
−⎜⎜
⎝ ⎠

⎞
⎟⎟   b.   c. 1cos 0− 1 1tan

3
− ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Solution:  

 a. 1 2sin
2 4

π− ⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
  b. 1cos 0

2
π− =   c. 1 1tan

63
π− ⎛ ⎞

=⎜ ⎟
⎝ ⎠
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Inverse Trigonometric Identities 
  Inversion Formulas 

  
( )
( )

1sin sin for 1 1x x x

1sin sin for 
2 2

y y yπ π−

≤

= − ≤ ≤

− = − ≤
 

  
( )
( )

1

1

tan tan for all 

tan tan for 
2 2

x x x

y y yπ π

−

−

=

= − < <
 

Example: Evaluate the given functions a. ( )1sin sin 0.5−  b. ( )1sin sin 0.5−  
Solution:  
 a. because( )1sin sin 0.5 0.5− = 1 0.5 1− ≤ ≤  

b. , because ( )1sin sin 0.5 0.5− = 0.5
2 2
π π

− ≤ ≤  

Example: For 1 1x− ≤ ≤ , show that a. ( )1 1sin sinx x− −− = −  b. ( )1 2cos sin 1x x− = −  
 
 Some other Identities 

 1 1sin cos
2

x x π− −+ =  

 1 1tan cot
2

x x π− −+ =  

 1 1sec csc
2

x x π− −+ =  

5. Hyperbolic Functions and Their Inverses 
5.1 Definition 
The hyperbolic sine and hyperbolic cosine function, denoted respectively by sinh and 
cosh, are defined by  

 sinh
2

x xe ex
−−

=  and cosh
2

x xe ex
−+

=  

 
The other hyperbolic function, hyperbolic tangent, hyperbolic cotangent, hyperbolic 
secant and hyperbolic cosecant are defined in terms of sinh and cosh as follows 

 sinhtanh
cosh

x x

x x

x e ex
x e e

−

−

−
= =

+
 coshcoth

sinh

x x

x x

x e ex
x e e

−

−

+
= =

−
 

 1 2sec
cosh x xhx

x e e−= =
+

 1 2csc
sinh x xhx

x e e−= =
−

 

5.2 Hyperbolic Identities 
 1/. 2 2cosh sinh 1x x− =  
 2/. 2 21 tanh secx h x− =  
 3/. 2 2coth 1 cscx h x− =  
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( )sinh sinh cosh cosh sinhx y x y x+ = +  y 4a/.

( )cosh cosh cosh sinh sinhx y x y x+ = +  y 4b/.

sinh xx x e+ =   5a/. cosh
cosh sinh xx x e−− =   5b/.

2 2sinh coshx x x=   6a/. sinh
2 2cosh 2 cosh sinhx x x= +   6b/.

2cosh 2 2sinh 1x x= +   7a/.
2cosh 2 2cosh 1x x= −   7b/.

( )cosh coshx x− =   8a/.

( )sinh sinhx x− = −   8b/.

( )sinh sinh cosh cosh sinhx y x y x− = −   9a/. y

9b/. ( )cosh cosh cosh sinh sinhx y x y x− = −   y

e, the inverse hyperbolic cosine, and inverse ge se 
functions ar

 
5.3 Inverse Hyperbolic Functions 
The Hyperbolic inverses that are important and to be studied here are the inverse 
hyperbolic sin  hyperbolic tan nt. The

e 1sinhy x−= (or sinhArc x= ), cy 1oshy x−= (or coshy Arc x= ) and 
1tanhy x−= (o tany Arc= h x ) are the inverses of sinh , cosh ay x nd tanhy x y x= = =  r

r ively.  espect
eorem  Th

( )1 2 i/. s  ( nyinh ln 1x x x− = + + for a  real number) 

 ii/. ( )1 2cosh ln 1x x x− = + −  ( 1x ≥ ) 

iii/. 1 1 1tanh ln
2 1

xx
x

− +⎛ ⎞= ⎜ ⎟−⎝ ⎠
  ( 1 1x− < < ) 

 

 

 
6 Limits 
Definition: 
To say that lim

x c
( )f x L

→
= means that for each given 0ε > (n  small) to matter how here is a 

corresponding 0δ > such that ( )f x L ε provided that 0 x c δ< − < ; that is  − <

( )0 x c f x Lδ ε< .  

2/

< − < ⇒ −

.
2

2

2 3 2lim 5
2x

x x
x→

− −
=

−
Example: 1/.Prove that ( )

4
lim 3 7 5
x

x
→

− =    

By 
Right-hand Limit and Left-Hand Limit 

( )
−

=
a

lim
→x

f x Awe mean that f is defined in some open interval ( ),c a and 

( )f x aproaches A as x ap rough values less than a, that is, as x approachproaches a th es a 
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from the left. Similarly, ( )lim f x A=  means that f is defined in some open interva
x a+→

l 

and ( ),a d ( )f x approaches a f om the right. 
 inter  a and in an interval to the right of a, then 

A as x
val to the left of

 approaches r
If f is defined in an

( )lim
x a

f x A
→

= iff ( )lim
x a

f x A
−→

= and ( )lim
x a

f x A
+→

=  

 
Limit Theorems

ositiv

im
x c→

=

m
x a

 
be a p e i f and g be functions that have limits at c. L nteg

T
et n 
hen 

er, k be a constant, and 

k k   1/. l

  2/. li x a
→

=

 3/. ( ) ( )lim
x c

k f x
→ →

=  
( )

lim
x c

kf x⎡ ⎤⎣ ⎦

 ( ) ( ) ( )lim
c

4/. lim
x c

lim
x c x

x g f x g x±⎡ ⎤ ⎡⎣ ⎦ ⎣  f x
→ →

± =⎡ ⎤⎣ ⎦

( ) ( )lim
x c

→

 5/.

⎤⎦

( ) ( )lim
x c

x g x⎡ ⎤ ⎡
⎣ ⎦ ⎣  lim

x c
f x f x

→ →
=⎡ ⎤⎣ ⎦ g

→
⎤
⎦

( )( ) 6/. ( ) 0g x  
( ) ( )

lim
, limx c

x c

f xf x →

→
= ≠lim

limx c
x c

g x g x→
→

 7/. ( ) ( )lim limn n
x c x c

f x f x
→ →

= if defined. 

7.  Fu Con

Let f

x c

tin f nctions 

 be defined on an open interval containing c. We say that f is continuous at c 

uity o
Continuity at a Point 

(if ( )lim )f x f= c .  
→

sin 3
Example: ( ) , 0x x

f x
≠

 
3 0

⎧
⎪
⎨
⎪ =⎩

x =

0x =
x

( )0 3, f f =At the point  is defined and  

( )
0 0

lim= =

0x→

sin 3 3xf x =  li
x x
m

x→ →

We see that ( ) ( )lim 0f x f= . Thus f is continuous a  pt the oint 0x =        

that
 
Example: Show  f is discontinuous at the point 1x =   

  ( ) 1, 1
2 4,

1, 1

x x 1
f x x x

x

− + >⎧
⎪= ⎨
⎪− =⎩

+ <  

the function is defined, that is ( )1 1f = −  1x = At the point 
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( ) ( )m lim 2 4 2f x x
+ +

= − + =
 

( ) ( )
1 1

lim lim 1 2
x x

f x x
− −→ →

= + =
1 1

li
x x→ →  

We see that ( ) ( )lim lim 2f x f x
− +

= = . Then ( ) ( )1
1

lim 2
x

f x
→

= ≠
1 1x x→ →

f  

He  f is discontinuous at the point 1x =  nce
 
Definition Continuity on an Interval 
The function f is right continuous at a if ( ) ( )lim

x a
f x

+→
= f a and left continu t b ous a

( ) ( )limif
x b

f x f b
−

=
→

We say f is continuous on an open interval if it is continuous at each poi h

.  

nt of t at 
edinterval. It is continuous on the clos  interval [ ],a b is continuous on ( ),a b , rig

ous at a, a
if it ht 

continu nd left continuous at b. 
 

xample: Show that ( ) 29f x x= − is continuous on the closed interval [ ]3,3−  E

is the interval[ ]3,3−fSolution: We see that t ain of he dom . For c in the interval 

)we have  ( 3,3−

( ) ( )2 2lim lim 9 9
x c x c

f x x c
→ →

= − = − =  f c

o

 

is continuous on . Also ( )3,3− fS

 ( ) ( )2lim limf x x
− −

=
3 3

9 0 3
x x

f
→ →

− = =  

 
and  

( ) ( )2

3 3
lim lim 9 0 3

x x→− −
f x x f

+ +→
= − = = −  

So is continuous on [ ]3,3−f . 

 
 
Exercises

1 Given ( ) 1
3 5x
xxϕ −

=
+

, determine 1
x

ϕ ⎛ ⎞
⎜ ⎟ . 
⎝ ⎠

2 If ( ) ( )tanf α α , verify that = ( ) ( )
( ) 2

2
2

1

f
f

α
α =

−
. 

f α⎡ ⎤⎣ ⎦
( ) lnf x x= and ( ) 3x xϕ = , determine ( )( )2f ϕ , ( )( )f aϕ and )( )(f aϕ3 Given . 

4 Find the domain of the following function
a. 

s 
23y x= −  b. ( ) 43 7f x x x= + + −  c. ln 1y x= +   

( )ln e. ( )arcsin 3 5y x= −lny x   d. =   

f. ( )2 2ln 3 2x x− + +    g.
2

sin
4

xy
x

=
−

 4 5y x x= − + +

 7
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5 If ( ) 2xf x = , show that  a. ( ) ( ) ( )153 1
2

f x f x f+ − − =  b.x ( )
( ) ( )3

4
1

f x
f

f x
+

=
− +

 

1
1

x6 If ( )f x
x
−
+

, show that = ( )1f f x⎛ ⎞ = −⎜ ⎟ and 
( )

1 1
x⎝ ⎠

f
x f x
⎞− = −⎟

⎝ ⎠
 ⎛

⎜

7 If ( ) 1f x
x

= , then sh tow tha  ( ) ( ) abf a f b f
b a

⎛ ⎞
⎜ ⎟− =

−⎝ ⎠
 

( ) ( )f a h f a
h

+ −
in the following cases: 8 Compute 

) 1
2

 a. (f x
x

=
−

when ≠2and 2a a h≠ +  

 b. ( ) 4f x x= − when ≥4 and 4a a h≥ +  

( )
1

xf x
x

=
+

when 1 and -1a a h≠ − + ≠   c.

9 Prove that  

( a. )1 , x+ ∀ ∈

 b.

1 2sinh lnx x x− = +  

(, 1< )1 1 1tanh ln 1
2 1

xx x
x

− +⎛ ⎞= − <⎜ ⎟−⎝ ⎠
 

that  
 a.
10 Prove 

( )1 2sin cos 1x x− = −  b. ( )1 2cos sin 1x x− = −

1 2 4 5( )1 2sec tan 1x x− = + sin 2cos
3 9

−⎡ ⎤⎛ ⎞ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  d. c.

 e. ( )1

2

x ( )tan sin
1

x
x

− =
−

 f. 1

2
sin tan

1
xx

x
−  =

+

( )1
2

2x( )1 2cos 2sin 1 2x x− = − g.  h. ta 2 tan n
1

x− =  
x−

11  Prove that 1 1 1tan tan tan
1
x yx y

xy
− − − ⎛ ⎞+

+ = ⎜ ⎟−⎝ ⎠
if 1 1tan tan

2 2
x yπ π− −− < + < and use the 

e that fact to prov
1 11 1 a. tan tan

3 42
π− −+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  b.⎛ ⎞ ⎛ ⎞ 1 11 1tan

3 7 4
2 tan π− −⎛ ⎞ ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 +⎜ ⎟

⎝ ⎠

12 Compute 1 1 1 11 1 1 1cos sin os ,sin sin cos− − − −⎛ ⎞ ⎛ ⎞+ +  2c
5 5 5 4⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
13 Prove that is continuous at (f 4) 2 3 2x x x= − + x =  

( ) 1f x x=14 Prove that is continuous at   a. 2x =     
15 Investigate the continuity of e dicated points:  each of the following functions at th  in

 8
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( )
sin , 0

0, 0

x x
f x x

x

⎧ ≠⎪= ⎨
⎪ =⎩

 a. 0x = at the point  

b. ( )f x x x= −    at the point 0x =  

( )
3

2

8 , 2
4

3, 2

x xf x x
x

⎧ −
≠⎪= −⎨

⎪ =⎩

c.    at the point 2x =  

16 Find a value for the constant k, if possible, that will make the function continuous 

a. ( )
7 2, 1

2 , 1
x x ≤

 f x
−⎧

= ⎨kx x >⎩

b.
2

 ( )
2 , 2

2 ,
kx x

f x
x k x

⎧ ≤
= ⎨

+ >⎩
 

ans: a.            b. 5 4 3  
( )f x17  Find the points of discontinuity, y if an , of the function such that  

  

  

( )
1, 2

2 1,1 2
1, 1

x x
f x x x

x x

+ ≥⎧
⎪= − < <⎨
⎪ − ≤⎩

 

ans: discontinuous at 1x =  
the function  18 If 

2

( )
16 , 4x xf x

⎧ −
4

, 4
x

c x

≠⎪= −⎨
⎪ =⎩

is continuous, what is the value of c? 
  ans: 8 
19 For what o  is the following a continuous function? 

 

value f k

( )
7 2 6 4 7, if and 2

2 2
if 2

x x x xf x x
k x

⎧ + − +
≥ − ≠⎪= ⎨ −

⎪ =⎩

 

ans: 1
8

 

20 Let  
2

( )
3 1, 0

, 0 1
x x

f

8, 1

x cx d x
⎧ − <
⎪

= + ≤ ≤⎨
⎪

 

Determine c and d so that 
x x+ >⎩

f is continuous (everywhere). 
 ans: 
 

1d = − , 4c =  

 9
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1
2 , 1

21 Determine if the following function is continuous at x=1.  

( )
3 5,x x

f x
x

− ≠⎧
=  ⎨ =⎩

  22 Determine if the following function is continuous at x=-2.

( )
2

3

2 , 2
6 , 2

x x x
f x

x x x

⎧ + ≤ −⎪= ⎨
− > −⎪⎩

 

23 Determine if the following function is continuous at x=0 

2

6 , 0
3

 ( ) 2 , 0f x x
⎪

= =⎨

4 , 0

x x
x

x x

−⎧ <⎪ −

⎪
+ >⎪

 

4. Determine if the function

⎩

( )
2

3

1
1

xh x
x
+

=
+

2  is continuous at x = -1. 

25. For what values of x is the function ( )
2

2

3 5
3 4

x xf x
x x
+ +

=
+ −

continuous? 
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1 

 

Differentiation 
 

1 Definition 
A function f is said to be differentiable at x if and only if  

 ( ) ( )
0

lim
h

f x h f x
h→

+ −
 

exists.  
 
If this limit exists, it is called the derivative of f at x and is denoted by ( )f x′ . Hence, 

( ) ( ) ( )
0

lim
→

+ −
′ =

h

f x h f x
f x

h
 

Example   ( ) ( )2 , ?f x x f x′= =
Solution 

 ( ) ( ) ( )2 2 2 2 22 2
f x h f x x h x x hx h x x h

h h h
+ − + − + + −

= = = +  

Then  

 ( ) ( ) ( ) ( )
0 0

lim lim 2 2
h h

f x h f x
f x x

h→ →

+ −
′ = = h x+ =

)

 

Example Find if ( 2f ′ − ( ) 21f x x= −  
Solution  
We can first find ( )f x′ in general 

 
( ) ( ) ( ) ( )

( )

2 2

0 0

2

0 0

1 1
lim lim

2lim lim 2 2

h h

h h

x h xf x h f x
f x

h h
xh h x h x

h

→ →

→ →

⎡ ⎤ ⎡ ⎤− + − −+ − ⎣ ⎦⎣ ⎦′ = =

− −
= = − − = −

 

and then substitute for 2− x  
  ( ) ( )2 2 2f ′ − = − ⋅ − = 4

)We can also evaluate more directly ( 2f ′ −

 ( ) ( ) ( ) ( ) ( )2 2
2

0 0 0

1 2 1 22 2 42 lim lim lim
h h h

hf h f h hf
h h→ → →

⎡ ⎤ ⎡ ⎤− − + − − −− + − − −⎣ ⎦ ⎣ ⎦′ − = = = = 4
h

 

Example Find  if ( )0f ′ ( )
2

3

3 1, 0
1, 0 1

x x
f x

x x

⎧ + ≤⎪= ⎨
+ < <⎪⎩

 

Example Find the derivative of ( )
9

xf x
x

=
−

 

 
The process of finding a derivative is called differentiation. In the case where the independent 
variable is x it is denoted by the symbol  

  ( )d f x
dx

⎡ ⎤⎣ ⎦  

read the derivative of ( )f x with respect to x  
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2 

  ( ) ( )d f x f x
dx

′=⎡ ⎤⎣ ⎦  

If the dependent variable , then we write ( )y f x= ( )dy f x
dx

′=  

 
2  Rules for Differentiating Functions 
Assume that u, v, and w are differentiable functions of x and that c and m are constants 

1 ( ) 0=
d c
dx

(The derivative of a constant is zero) 

2 ( )d dcu c
dx dx

=
u  

3 ( ) 1md mx mx
dx

−= (Power Rule) 

4 ( )d du dvu v w
dx dx dx dx

± ± = ± ±
dw (sum/difference rule) 

5 ( )d duuv v u
dx dx dx

= +
dv (Product Rule) 

6 2

du dvv ud u dx dx
dx v v

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

(Quotient Rule) 

7 2

1 ,

du
d dx u
dx u u

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

0≠ (Reciprocal Rule) 

3 The Chain Rule 
If we know the derivatives of f and g , how can we use this information to find the derivative 
of the composition f gD ? 
 
The key to solving this problem is to introduce dependent variables 
  and ( )( ) ((y f g x f g x= =D )) ( )u g x=  

So that . We use the unknown derivatives  ( )y f u=

 ( )dy f u
du

′=  and ( )du g x
dx

′=  

to find the unknown derivative 

 ( )( )dy d f g x
dx dx

⎡ ⎤= ⎣ ⎦  

 
Theorem (The Chain Rule) 
If is differentiable at the point x and g f is differentiable at the point then the 
composition 

( )g x
f gD is differentiable at the point x. Moreover, if  

   and ( )(y f g x= ) ( )u g x=  

then and  ( )y f u=

  dy dy du
dx du dx

= ⋅  

Example Find dy
dx

if  ( )34cosy x=
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3 
 

u
Solution 

Let  so that , then by chain rule 3u x= 4cosy =

 [ ] ( ) ( )3 24cos 4sin 3 12 sindy dy du d du x u x x
dx du dx du dx

⎡ ⎤= ⋅ = ⋅ = − ⋅ = −⎣ ⎦
2 3x

)

 

 
In general, if ( )(f g x is a composite function in which the inside function and the outside 
function 

g
f are differentiable, then 

  ( )( ) ( )( ) ( )d f g x f g x g x
dx

⎡ ⎤ ′ ′= ⋅⎣ ⎦  

Example Find the derivative of 
32

3
x
x
+⎛ ⎞

⎜ ⎟−⎝ ⎠
 

Solution 
By using the chain rule, we obtain 

 
3 22 23

3 3
d x x d x
dx x x dx x

+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2
3

+
−

 

 Let calculate 2
3

d x
dx x

+⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 
( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )2 2

3 2 2 3 3 1 2 12 5
3 3 3

d dx x x x x xd x dx dx
dx x x x

− + − + − − ⋅ − + ⋅+⎛ ⎞ = =⎜ ⎟−⎝ ⎠ − − 23x
= −

−
 

Hence 

( )
( )
( )

23 2 2

2 3

22 2 2 2 53 3
3 3 3 3 3 3

xd x x d x x
dx x x dx x x x x

⎛ ⎞ ++ + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ − −⎝ ⎠
15

 
 
4 Derivatives of Trigonometric and Hyperbolic Functions 

 

1 ( )sin cosd x x
dx

=  5 ( )sec sec tand x x x
dx

=  

2 ( )cos sind x x
dx

= −  6 ( )csc csc cotd x x x
dx

= −  

3 ( ) 2tan secd x x
dx

=
 

7 ( )cosh sinhd x x
dx

=  

4 ( ) 2cot cscd x x
dx

= −  8 ( )sinh coshd x x
dx

=  

N.B: sintan
cos

xx
x

=  coscot
sin

xx
x

=  1sec
cos

x
x

=  and 1csc
sin

x
x

= 1 

Proof 

Recall that 
0

sinhlim 1
h h→

= and 
0

1 coslim 0
h

h
h→

−
=  

From the definition of a derivative, 

                                                 
1 sec: secant and csc: cosecant 
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[ ] ( )

0 0

0 0

sin sin sin cos cos sin sinsin lim lim

cos 1 sin sin 1 coslim sin cos lim cos sin

h h

h h

x h xd x h xx
dx h h

h h hx x x x
h h h

→ →

→ →

+ − + −
= =

⎡ − ⎤ ⎡ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦ ⎣

h x

h
h

⎤⎞
⎟⎥⎠⎦

 

   
Since ( )

0
lim sin sin
h

x x
→

= and ( )
0

lim cos cos
h

x x
→

= ,  

 [ ] ( ) ( )
0 0

sin 1 cossin cos lim sin lim cos 1 sin 0 cos
h h

d h hx x x x x
dx h h→ →

−⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ = ⋅ − ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x  

Thus, we have shown that 

  [ ]sin cosd x x
dx

=  

The derivative of cos x is obtained similarly: 

  

[ ] ( )

( )( ) ( )( )

0 0

0

0 0

cos cos cos cos sin sin coscos lim lim

cos 1 sinlim cos sin

1 cos sincos lim sin lim

cos 0 sin 1 sin

h h

h

h h

x h xd xx
dx h h

h hx x
h h

h hx x
h h

x x x

→ →

→

→ →

+ − − −
= =

⎡ − ⎤⎛ ⎞ ⎛ ⎞= ⋅ − ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
−⎛ ⎞ ⎛ ⎞= − ⋅ − ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= − − = −

h x h x

 

Thus, we have shown that  

  [ ]cos sind x x
dx

= −  

Example Find ( )f x′ if ( ) 2 tanf x x= x  
Solution  

 ( ) [ ]2 2

2 2

tan tan

sec 2 tan

d df x x x x x
dx dx

x x x x

′ ⎡ ⎤= ⋅ + ⋅ ⎣ ⎦

= +
 

 

Example Find dy dx if sin
1 cos

xy
x

=
+

 

Solution  

 

( ) [ ] [ ]
( )

( )( ) ( )(
( )

)

( ) ( )

2 2

2 2

2 2

1 cos sin sin 1 cos 1 cos cos sin sin
1 cos 1 cos

cos cos sin cos 1 1
1 cos1 cos 1 cos

d dx x x x x x xdy dx dx
dx x x

x x x x
xx x

+ ⋅ − ⋅ + + − −
= =

+ +

+ + +
= = =

++ +

x

 

 
5  Derivatives of Functions not Represented Explicitly 
5-1 Implicit differentiation 

Consider the equation 1xy = . One way to obtain dy dx is to write the equation as 1y
x

=  

from which it follows that 

 2

1 1dy d
dx dx x x

⎛ ⎞= = −⎜ ⎟
⎝ ⎠
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Another way is to differentiate both sides 

 

( ) ( )

( ) ( )

1

0

0

d dxy
dx dx

d dx y y x
dx dx
dyx y
dx

dy y

=

+ =

+ =

= −
dx x

 

Since 1y
x

= , 2

1dyy
dx x

′ = = −  

This second method of obtaining derivatives is called implicit differentiation.  
Example  By implicit differentiation find dy dx  if 2 25 siny y x+ =  
Solution 
Differentiating both sides with respect to x and treating and treating y as a differentiable 
function of x, we obtain. 

 

( ) ( )

( ) ( )

( )

2 2

2

5 sin

5 sin

5 2 cos 2

10 cos 2

2
10 cos

d dy y x
dx dx

d dy y
dx dx

dy dyy y
dx dx

dy dyy y x
dx dx

dy x
dx y y

+ =

+ =

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

+ =

=
+

2x

x  

Example  Find dy
dx

if  4 37 4x x y x+ + =

Example  Find 
2

2

d y
dx

 if  
2 24 2x y− = 9

 
5-2 Derivative of the Inverse Functions 

Let be a function whose inverse is ( )y f x= ( )1x f y−= . Then 1dy
dxdx
dy

=  

Example Find the derivative of .        arcsiny x=
Solution 

We have and hence arcsin siny x x= ⇔ = y ( )sin cosdx d y y
dy dy

= = . Then 

 ( ) ( ) 2

1 1 1 1arcsin
cos cos arcsin 1

dy d x dxdx dx y x x
dy

= = = = =
−

 
Example Find the derivative of  and arccosy x= arctany x= . 
5-3 Derivatives of functions Represented Parametrically 
If a function y is related to a variable x by means of a parameter t 
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( )
( )

x t

y t

ϕ

ψ

=⎧⎪
⎨

=⎪⎩
 

Then 
dy

dy dt
dxdx
dt

=  

or, in other notation, 
t

x
t

yy
x
′

′ =
′

 

Example Find dy
dx

if 
cos
sin

x a t
y a t
=⎧

⎨ =⎩
 

Solution 

We find sin , cosdx dya t a
dt dt

= − = t . Hence cos cot
sin

dy a t t
dx a t

= − = − . 

Example Find dy
dx

if 3

2 1x t
y t
= −⎧

⎨
=⎩

 

6  Logarithmic Differentiation 
Taking the derivatives of some complicated functions can be simplified by using logarithms.  
This is called logarithmic differentiation. 

Example Differentiate the function 
( )

5

21 10 2
xy

x x
=

− +
 

Solution 
Taking logarithms of both sides we obtain 

 ( )
( )

5

2

5 2

ln ln
1 10 2

ln ln ln 1 10 ln 2

xy
x x

y x x x

=
− +

= − − − +

 

Differentiate both sides with respect to x to get 

 

( )2
4

5 2

4

5 2

25 10
1 10 2

5 10
1 10 2

xy x
y x x x
y x x
y x x x

′
+′

= + −
− +

′
= + −

− +

 

Soving for  y′

 

( )

4

5 2

5 4

5 22

5 10
1 10 2

5 10
1 10 21 10 2

x xy y
x x x

x x
x x xx x

⎛ ⎞
′ = + −⎜ ⎟− +⎝ ⎠

⎛ ⎞
= +⎜ ⎟

x
−

− +− + ⎝ ⎠

 

We can also use logarithmic differentiation to differentiate functions in the form 
 ( ) ( )v x

y u x= ⎡ ⎤⎣ ⎦  

Example Differentiate xy x= , 
xxy x= , xy a= where a is a constant. 
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( )y f x=

7 Higher Order Derivatives 
7-1 Definition of Higher Order derivatives 
A derivative of the second order, or the second derivative, of a function is the 
derivative of its derivative; that is  

( )y y ′′′ ′=  
The second derivative may be denoted as 

y′′ , or 
2

2

d y
d x

, or ( )f x′′  

Generally, the nth derivative of a function ( )y f x= is the derivative of the derivative of order 
(n-1) . For the nth derivative we use the notation  

( )ny , or 
n

n

d y
dx

, or ( ) ( )nf x  

Example Find the second derivative of the function ( )ln 1y x= −  
Solution 

1
1

y
x

−′ =
−

, 
( )2

1 1
1 1

y
x x

′−⎛ ⎞′′ = =⎜ ⎟−⎝ ⎠ −
 

7-2 Higher-Order Derivatives of functions represented Parametrically 
If  

( )
( )

x t

y t

ϕ

ψ

=⎧⎪
⎨

=⎪⎩
 

then the derivative 
2

2, ,...dy d yy y
dx dx

′ ′′= = can successively be calculated by the formulas 

( ) ( )
, xt t

x xx x x
t t

yyy y y
x x

′′′ ′′ ′′ ′= = =
′ ′

 and so forth. 

For the second derivative we have the formula 

( )3
t tt tt t

xx
t

x y x yy
x

′ ′′ ′′ ′−′′ =
′

 

Example  Find if y′′
cos
sin

x a t
y b t
=⎧

⎨ =⎩
. Answer: 2 3sin

b
a t

− . 

8 Differential 
8-1 First-Order Differential 
 
The differential of a function is the principal 
part of it increment, which is linear relative to the 
increment 

( )y f x=

x dxΔ = of the independent variable x. The 
differential of a function is equal to the product of it 
derivative by the differential of the independent variable 

 

dy y dx′=  
whence 

dyy
dx

′ =
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0dc =
8-2 Properties of Differential 

1 , c  is a constant 
2  ( )d cu cdu=

3  ( )d u v du dv± = ±

4  ( )d uv udv vdu= +

5 2

u vdu udvd
v v

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

  0v ≠

6 ( ) ( )df u f u du′=   
8-3 Approximation by Differential 
For the function , ; that is ( )y f x= y dyΔ ≈ ( ) ( ) ( )f x x f x f x′ x+Δ − ≈ Δ  whence 

( ) ( ) ( )f x x f x′+ Δ ≈ Δx f x+  
8-4 Higher-Order Differential 
If and x is the independent variable, then ( )y f x=

  ( )22d y y dx′′=

  ( )33d y y dx′′′=
 ……………… 
  ( ) ( )nnnd y y dx=

9 Theorems Relative to Derivative 
9-1 Rolle’s Theorem 
If ( )f x is continuous on the interval [ ],a b , differentiable at every interior point of the 

interval and ( ) ( )f a f b= , then there exist at least a point x ξ= , a bξ< < where ( ) 0f ξ′ = .  
Proof 
If f is continuous on the interval [ , then it attains on the interval a relative maximum 

value M and a minimum value m. If m=M, then f is constant, say, 
],a b

( )f x m= , implying that 

. If m≠M, we suppose that M >0 and f attains the maximum value M at ( ) 0f ξ′ = x ξ= , that 

is ( )f Mξ = , ,a bξ ≠ . If (f )ξ is the upper bound of f, then ( ) ( ) 0f ξ ≤f hξ + −  and 
therefore,  

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

0, 0 lim 0

0, 0 lim 0

h

h

f h f f h f
h

h h
f h f f h f

h
h h

ξ ξ ξ ξ

ξ ξ ξ ξ
→

→

+ − + −
≤ > ⇒ ≤

+ − + −
≥ < ⇒ ≥

 

Hence . ( ) 0f ξ′ =

Example Consider the function ( ) sinf x = x The function is both continuous and 

differentiable everywhere, hence it is continuous on [ ]0,2π  and differentiable on ( ) . 
Moreover  

,a b

  ( ) ( )0 sin 0 0, 2 sin 2 0f f π π= = = =

so that f satisfies the hypotheses of Rolle’s theorem on the interval [ ]0,2π . Since 

( ) cosf c = c )′ . Rolle’s theorem guarantees that there is at least one point in (0,2π such that  
  cos 0c =
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which yields two values for c, namely 1 2c π= and 2 3 2c π=  
 
Example Verify that the hypotheses of Rolle’s theorem is satisfied on the given interval and 
find all values of c that satisfy the conclusion of the theorem 

 ( ) [ ]
2 1, 1,1

2
xf x
x
−

= −
−

 

Solution 
 On the interval [ ]1,1−  ( )f x is continuous and it is differentiable on ( )  1,1−

 ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

2 2 2 2 2

2 2

1 2 2 1 2 2 1 2 4
2 2

x x x x x x x x x xf x
x x

′ ′− − − − − − − − − − +′ = = =
− − 2

1
2x −

0

 

  
( )

2

0

4 1

f ξ

ξ ξ

′ =

− + =

which has the roots 1 22 3, 2ξ ξ= − = + 3  

Hence 2ξ = − 3 satisfies the theorem. 
9-2 Mean-Value Theorem 
Let f be differentiable on and continuous on( ,a b) [ ],a b . Then there is at least one point ξ  in 

such that( , )a b ( ) ( ( )) ( )f b f b aξ −a f ′− = . 
Proof 

The slope of is ( )g x ( ) ( )f b f a
Q

b a
−

=
−

 

since passes through the point ( )g x ( )( ),a f a , 
then the equation of the line is defined by  
  ( ) ( ) ( )g x f a Q x a− = −

then ( ) ( ) ( )g x f a Q x a= + − .  
Let  

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f b f a
F x f x g x f x f a Q x a f x f a x a

−
⎡ ⎤= − = − + − = − − −

( )g x

( )f x

( )f b

( )f a

a bx

b a⎣ ⎦ −
 

Hence we obtain the function which is continuous on( )F x [ ],a b , differentiable on  and

. By Rolle's Theorem, 
( ,a b)

( ) ( ) 0F a F b= = ( ),a bξ∋ ∈ such that ( ) 0F ξ′ = .  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f b f a
F x f x

b a
f b f a

F f
b a

ξ ξ

−
′ ′= −

−
−

′ ′= −
−

 

then ( ) ( ) ( ) 0
f b f a

f
b a

ξ
−

′ − =
−

. Hence ( ) ( ) ( )( )f b f a f b aξ′− = − ■ 

 
Example  Let . Show that ( ) 3 1f x x= + f is satisfies the hypotheses of the Mean-Value 

Theorem on the interval[ and find all values of ]1,2 ξ  in this interval whose existence is 
guaranteed by the theorem. 
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Solution  
Because ( )f x is a polynomial, f is continuous and differentiable everywhere, hence is 

continuous on [ ]1,2  and differentiable on ( )1,2
2

. Thus, the hypotheses of the Mean-Value 
Theorem are satisfied with and 1a = b = . But  

( ) ( )1 2f a f= = ,  ( ) ( )2 9f b f= =

( ) 23f x x′ = , ( ) 23f c c′ =  
so that the equation  

 ( ) ( ) ( )f b f a
f

b a
ξ

−
′ =

−
 

23ξ⇔ = 7  which has two solutions 
7 3ξ =  and 7 3ξ = −  

So 7 3ξ = is the number whose existence is guaranteed by the Mean-Value Theorem. 
9-3 Cauchy's Theorem 
Let ( )f x

( ) 0g x ≠

and be continuous and differentiable function over the interval [ and 

over[ . Then there exists an interior point 
( )g x

,a b
]

]
,a b

′ x ξ=  to the interval [ such that  ],a b

( ) ( )
( ) ( )

( )
( )

f b f a f
g b g a g

ξ
ξ

′−
=

′−
 

Proof 

Let define by Q ( ) (
( ) ( )

)f b f a
Q

g b g a
−

=
−

 

Notice that  since if not, ( ) ( ) 0g b g a− ≠ ( ) ( )g b g a=  then by Rolle's Theorem, at 

a point interior to[ . It contradicts to the condition of the theorem.  
( ) 0g x′ =

],a b

Let form a function ( ) ( ) ( ) ( ) ( )F x f x f a Q g x g a⎡ ⎤= − − −⎣ ⎦
,

, which satisfies the condition of 

the Rolle's Theorem, then there exists a number x a bξ ξ= <

( )g x′ ( )

< , such that . Since

, then

( ) 0F ξ′ =

( ) ( )F x f x Q′ ′= − ( ) ( ) 0F f Qgξ ξ ξ′ ′ ′= − = ⇒  ( )
( )

f
Q

′ ξ
g ξ′

. Hence  =

( ) ( )
( ) ( )

( )
( )

f b f a f
g b g a g

ξ
ξ

′−
=

′−
■ 

9-4 L' Hopital's Rule  
Consider the function ( ) ( ) ( )F x f x g x= , where both ( ) 0f x = and ( ) 0g x = when x a= . 
Then, for any x a> there exists a value ξ , a xξ< < such that  

 ( ) ( )
( ) ( )

( )
( )

f x f a f
g x g a g

ξ
ξ

′−
=

′−
 

or ( )
( )

( )
( )

f x f
g x g

ξ
ξ

′
=

′
 

Now as ,x a aξ→ → , therefore when the limit exists  

 ( )
( )

( )
( )

lim lim
x a a

f x f
g x g xξ→ →

′
=

′
x

 

This result is known as l' Hopital's Rule and is usually written as  
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 ( )
( )

( )
( )

lim lim
x a x a

f x f
g x g x→ →

′
=

′
x

 

  

Example Evaluate 20

cos 1lim
x

x
x x→

−
−

 

L'Hopital's Rule can still be applied in cases where ( )f x →∞and ( )g x →∞when x a→ , 
simply by writing   

  ( )
( )

( )
( )

1
lim lim

1x a x a

f x f
g x g x→ →

=
x

 

Now ( )1 0f x → and ( )1 0g x → as x a→ and the rule applies. Therefore,  

  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2

2

1
lim lim lim

1

lim lim

x a x a x a

x a x a

f x g x g x f x
L

g x f x g x f x

f x g x g x
L

g x f x f x

→ → →

→ →

⎡ ⎤′ ′− −⎢ ⎥= = =
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤′ ′
= =⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Hence  

 ( )
( )

( )
( )

lim lim
x a x a

f x f
g x g x→ →

′
=

′
x

 

Similarly, if ( )f x and both tend to zero, or both tend to infinity as x tend to infinity  ( )g x
 
the rule applies. By writing 1x u=  

 

( )
( )

( )
( ) ( )

( ) ( ){ } ( )
( )

2 20 0

0

1 1 1 1lim lim lim 1
1

lim 1 1 lim

x u u

u x

f x f u
f g u

u u ug x g u

f x
f u g u

g x

→∞ → →

→ →∞

⎧ ⎫⎛ ⎞′ ′= = − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

′
′ ′= =

′

 

If, after one application of l' Hopital's rule the limit is still indeterminate, the process can be 
repeated until a determinate form is reached.  
Example Evaluate 

 (i) 
2

30

sinlim
2x 2

x
x x→ +

(ans: 1 2 )  (ii) 
23lim x

x
x e−

→∞
(ans: 0)  

9-5 Taylor's Theorem for Functions of One Variable 
Suppose that the function has (( )y f x= 1n+ )th order derivative in the neighborhood of the 
point x a= . We will find the polynomial of order n at most such that  
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , n n

n n n nP a f a P a f a P a f a P a f a′ ′ ′′ ′′= = = =…   
The sought-for polynomial is of the form 
 ( ) ( ) ( ) ( ) ( )2 3

0 1 2 3
n

n nP x C C x a C x a C x a C x a= + − + − + − + + −"  

Let calculate the nth derivative of ( )nP x  

 ( ) ( ) ( ) ( )2 1
1 2 32 3 n

n nP x C C x a C x a nC x a −′ = + − + − + + −"  

 ( ) ( ) ( ) ( ) 2
2 32 6 1 n

n nP x C C x a n n C x a −′′ = + − + + − −"  

 ( ) ( ) ( )( ) ( ) 3
3 46 4 3 2 1 2 n

n nP x C C x a n n n C x a −′′′ = + ⋅ ⋅ − + + − − −"  
  #
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 ( ) ( ) ( )( )1 2 3 2 1n
n nP x n n n C= − − ⋅ ⋅ ⋅"  

Then we can obtain 
 ( ) 0f a C=  

 ( ) 1f a C′ =  

 ( ) 22 1f a C′′ = ⋅ ⋅  
  #
 ( ) ( ) ( )( )1 2 2 1n

nf a n n n C= − − ⋅ ⋅"  
and hence 

 
( )
( )

0

1

C f a

C f a

=

′=
 

 

( )

( )

( ) ( )

2

3

1
1 2

1
1 2 3

1
!

n
n

C f a

C f

C f a
n

′′=
⋅

′′′=
⋅ ⋅

=

#

a
 

Therefore, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

1 1 2 1 2 3 !

n
n

n

x a x a x ax aP x f a f a f a f a f a
n

− − −− ′ ′′ ′′′= + + + + +
⋅ ⋅ ⋅

"  

Let be the difference between the function ( )nR x ( )f x and the polynomial ( )nP x ; that is,  

  ( ) ( ) ( )n nR x f x P x= −
Then  
 ( ) ( ) ( )n nf x P x R x= +  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

1! 2! 3! !

n
n

n

x a x a x ax af x f a f a f a f a f a R x
n

− − −− ′ ′′ ′′′= + + + + + +"

( )nR x is called the remainder and is defined by 

 ( ) ( )
( ) ( )

1

1 !

n

n

x a
R x Q

n

+
−

=
+

x  

where is the function to be defined.  ( )Q x
Now we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 3

1! 2! 3! ! 1 !

n n
nx a x a x a x ax a

1

f x f a f a f a f a f a Q
n n

+− − − −− ′ ′′ ′′′= + + + + + +
+

" x

we will find .  ( )Q x

Consider an auxiliary function ( ) ,F t a t x< < which is define as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 1

1 2! ! 1

n n
nx t x t x tx t

!
F t f x f t f t f t f t Q

n n

+
− −− ′ ′′= − − − − − −

+
"

−
 

By computing and simplifying, we obtain ( )F t′
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

2

1 1
1

2
1 2! 2!

1
1 ! ! ! 1 !

n n n
n n n

x t x tx tF t f t f t f t f t f t

x t n n t x t n x t n

f t f t f t
n n n n

− −
+

− −−′ ′ ′ ′′ ′′ ′′′= − + − + −

− − − +
− + − +

− +
" Q

−
 

( ) ( ) ( ) ( ) ( )1

! !

n n
nx t x t

F t f t Q
n n

+− −
′ = − +  

We can see that the function satisfies the condition of Rolle's Theorem, then there exists 

a number
( )F t

ξ , a xξ< < such that ( ) 0ξF ′ = . Then  

 ( ) ( ) ( ) ( )1 0
! !

n n
nx x

f Q
n n
ξ ξ

ξ+− −
− + =  

 ( ) ( )1nQ f ξ+=  
and thus,  

 ( ) ( )
( )

( ) ( )
1

1

1 !

n
n

n

x a
R x f

n
ξ

+
+−

=
+

 

which is called Lagrange formula for the remainder. Since ξ is between x and a we can write 
it in the form  
  ( )a x aξ θ= + −
where θ is between 0 and 1; that is 0 1θ< < . Then the remainder can be written as  

 ( ) ( )
( )

( ) ( )
1

1

1 !

n
n

n

x a
R x f a x

n
θ

+
+−
⎡ ⎤= +⎣ ⎦+

a−  

The formula 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

2 3

1
1

1! 2! 3!

,0 1
! 1 !

n n
n n

x a x ax af x f a f a f a f a

x a x a
f a f a x a

n n
θ θ

+
+

− −− ′ ′′ ′′′= + + + +

− −
⎡ ⎤+ + + −⎣ ⎦+

"

< <

  

is called Taylor Formula for the function ( )f x . If , in this formula, 0a =  we obtain 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 1
10 0 0 0

1! 2! ! 1 !

n n
n nx x x xf x f f f f f x

n n
θ

+
+′ ′′= + + + + +

+
"  

which is known as Maclaurin Formula.  
Example: Use Macluarin Formula to expand the functions .  ,sin ,and cosxe x x

8−

 
Exercises 
Exercise 1 through 4, use definition of derivative 
1 Given , find ( ) 2 5y f x x x= = + yΔ and y xΔ Δ as x changes (a) from to 

 (b) and to 
0 1x =

1 0x x 1.2x= + Δ = 0x =1 1x 0.8= . 
2 Find y xΔ Δ , given . Find also the value of 3 2 4y x x= − − y xΔ Δ when (a) , (b) 

, (c) . 
4x =

0x = 1x = −

3 Find the derivative of ( ) 1
2

y f x
x

= =
−

at 1x = and 3x = . 

4 Find the derivative of ( ) 2 3
3 4

xf x
x
−

=
+
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5 Differentiate  

(a) 3 2
3 2

xy
x

−
=

+
, (b) 

2

24
xy

x
=

−
 

6 Find dy
dx

, given 21x y y= −  
Find the derivative of the following functions 
7 ( ) cotf x x= 32 3

1 1
3cos cos

y
x x

= −  x  
8 tan coty x x= −  

33 ( )2sin 5 1 tany x x
x
α

= − + +  9 ( ) 1sinf x x −= x  

10 sin cos
sin cos

x xy
x x
+

=
−

 

11 
( )2 11 tan

2
x x x

y
−+ −

=  

12 ( )22 sin 2 cosy t t t= − − t  

13 ( ) arctan arccotf x x= + x  

14 7 xy x e=  

15 
2

ln
xy

x
=

arcsinx

 

16 y e x=
sinhy x x=

 
17  
18 1 1tan tanhy x x− −= −  

19 
2

cosh
xy

x
=  

20 1 1sin sinhy x x− −=  
21  tanhy x= − x

22 
1cosh xy

x

−

=  

Derivative of composite function 
23  ( ) ( )3021 3 5f x x x= + −

24 21y x= −  

25 ( ) ( )43 2sinf x x= −  

26 3 51 1tan tan tan
3 5

y x x= − + x  

27 coty x=  

28 3 2
3

1sin
cos

y x
x

= +  

29 2 2csc secy x x= +  

30 11 siny x−= +  

31 1

1
tan

y
x−=  

34 1 cos 2
1 cos 2

x+  y =
x−

( ) ( )sin sinf t t t35 φ= +
1sin 2

 

x−=  y36 

37 1
2

1siny
x

−=  
x1cos e−=  y38 

( )ln 2 7y x39 +  =

( )2ln ln lny x x= −  40 

41 ( ) ( )1 1tan ln ln tany x− −= + x  

42 ( )ln 1 ln 1y x x  = + + +

( )y43 a x a x= + −  

) )( (ln 1 1 ln 1 1x xy e e= + − − + +44  

45 ( )2 3siny t=  

46 2 2arcsin arccosy x x= +  

47 
2

1
2

1sin xy
x

− −
=  

48 
2

arccos
1

xy
x

=
−

 

49 
2

arcsin
1

xy
x

=
+

 

50 2 2 arcsin xy a x a
a

= − +  

51 2 2 2 arcsin xy x a x a
a

= − +  

52 ( )2 2lny x a x= + +  

53 ( )
2

2 2 2 2ln
2 2
x ay x a x x a= − − + −  

54 ( ) 2

2

arcsin ln 1
1

x xf x x
x

= + −
−
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55 1cosh lny x−=  56 3tanh 2y x=  
57 Given the function ( ) xf x e−= , determine ( ) ( )0 0f xf ′+ . 

58 Given the function ( ) 1f x = + x , calculate the expression ( ) ( ) (3 3f x f ′+ − )3  

59 Given ( ) ( ) ( )tan , ln 1f x x g x= = x− , calculate 
( )
( )
0f
0g

′
′

 

60 Show that the function xy xe−= satisfies the equation ( )1xy x′ = − y  

61 Show that the function
2

2
x

y xe
−

= , satisfies the equation ( )21xy x y= −′  

62 Show that the function 1
1 ln

y
x x

=
+ +

, satisfies the equation ( )ln 1xy y y x′ = −  
Logarithmic Differentiation 
63 ( )( )( )1 2 1 3 1y x x x= + + +  

64 xy x=  

65 ( )
( ) ( )

2

2 4

1
1 3
x

y
x x

+
=

+ +
 

66 xy x=  

67 
( )1

2
x x

y
x
−

=
−

 

68 xy x=  

69 
2xy x=  

70 sin xy x=  

71 11
x

y
x

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

72 ( )arctan xy x=  

y is the function of x and determined in parametric form. Find dyy
dx

′ =  

73 3

2 1x t
x t
= −⎧

⎨
=⎩

 

74 
2

2

cos
sin

x a t
y a t

⎧ =⎪
⎨

=⎪⎩
 

75 2

1
1

1

x
t

ty
t

⎧ =⎪ +⎪
⎨

⎛ ⎞⎪ = ⎜ ⎟⎪ +⎝ ⎠⎩

 

76 ( )
2

2

2

2
1

1
1

atx
t

a t
y

t

⎧ =⎪ +⎪
⎨ −⎪ =⎪ +⎩

 

78 
3

x t

y t

⎧ =⎪
⎨

=⎪⎩
 

80 
2

2

1arccos
1

arcsin
1

x
t

ty
t

⎧ =⎪ +⎪
⎨
⎪ =
⎪ +⎩

 

81 
2

t

t

x e
y e

−⎧ =⎪
⎨

=⎪⎩
 

82 Compute dy
dx

for 
2

t π
= , if 

( )
( )

sin

1 cos

x a t t

y a t

= −⎧⎪
⎨

= −⎪⎩
 

83 Show that the function y given in the parametric form by the equations 
2

2 3

2 3
2

x t t
y t t

⎧ = +⎪
⎨

= +⎪⎩
 

 satisfies the equation  
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2 3

2dy dyy
dx dx

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Find the derivative dyy
dx

′ = of the implicit function y 

84  ( )2cosa x y+ = b

85 
2 2

2 2 1x y
a b

+ =  

86 tan y xy=  

87 arctan xxy
y

=  

88 x y a+ =  

89 ye x y= +  

90 ln
y
xx e c

−
+ =  

91 2 2 arctan yx y c
x

+ =  

92 x yy x=  

Find the derivatives y′of specified functions y at the indicated points 

93 ( ) (3 27 )x y x+ = − y  for and 2x = 1y =  

94 1y xye e ++    for and 0x = 1y =  

95 2 ln yy x
x

= +   for 1x = and 1y =  

 96 Find ( )6y of the function  sin 2y x=

97 Show that the function cosxy e−= x satisfied the differential equation ( )4 4 0y y+ =  
98 Find the nth derivatives of the functions  

  a) 1
1

y
x

=
−

 b) y x=  c) 1
1

y
x

=
+

 d) ( )ln 1y x= +  e) 1
1

xy
x

+
=

−  
 f)  g) (ln 1y x= + ) xy xe=   

  99 In the following problem find 
2

2

d y
dx

 

  a) 3

lnx t
y t
=⎧

⎨
=⎩

 b) ( 2

arctan

ln 1 )
x t

y t

=⎧⎪
⎨ = +⎪⎩

 c)
2

arcsin

1

x t

y t

=⎧⎪
⎨

= −⎪⎩
  d)

cos
sin

x a t
y a t
=⎧

⎨ =⎩
 

 e)
at

at

x e
y e

−⎧ =⎪
⎨

=⎪⎩
 f)

ln
1

1

x t

y
t

=⎧
⎪
⎨

=⎪ −⎩

 

100 Use L’Hopital Rule to find the limits 

 a)
1

1lim
1 sin

2
x

x
xπ→

−

−
  b)

0

cosh 1lim
1 cosx

x
x→

−
−

 c)
0

tan sinlim
sinx

x x
x x→

−
−

 d)
0

lim
cot

2
x

x
x

π

π→
 

 e)
2

tanlim
tan 5x

x
xπ

→
 f)

( )
( )0

ln sin
lim

ln sinx

mx
x→

 g) ( )
1

lim 1 tan
2x

xx π
→

−  h)  ( )
1

lim ln ln 1
x

x x
→

−

 i) 
1

lim x
x

x
→+∞

  j)
1

1
1

lim x
x

x −

→
  k) sin

0
lim x

x
x

→
  l) ( )cos

2
1

lim 1
x

x
x

π

→
−  

  
101 Find the approximate values of the followings using the formula 
 ( ) ( ) ( )f x x f x x f x′+ Δ ≈ Δ +  

a)  b)  c) tan44º d) arctan 1.05  e)  cos61D ln 0.9 0.2e
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102 Approximate the functions 

a) ( ) 1 for 0.f x x x= + = 2  b)  c)
21 for 1.05xy e x−= = ( ) 3

1 for 0.1
1

xf x x
x

−
= =

+
 

103 21u = − x

x

, find . find . 2d u 2d y
104 , find . arccosy x= 2d y
105 , find . sin lny x= 2d y
106 ( ) 3f x x x= − on the intervals and 1 0x− ≤ ≤ 0 1x≤ ≤ satisfies the Rolle theorem. Find 

the appropriate values of ξ . 
107 Test whether the Mean-Value theorem holds for the function ( ) 3f x x x= − on the interval 

[ ]2,1− and find the appropriate value of ξ . 

108 a) For the function and ( ) 2 2f x x= + ( ) 3 1g x x= − . Test whether the Cauchy theorem 

holds on the interval[ and find ]1, 2 ξ . 

 b) do the same with respect to ( ) sinf x x= and ( ) cosg x x= . 
109 Verify the following by Taylor’s formula 

 a) ( ) ( ) ( )2 3

1
2! 3!

x a x a x a
e e x a

⎡ ⎤− −
= + − + + +⎢ ⎥

⎢ ⎥⎣ ⎦
"  

 b) ( ) ( ) ( )2 3

sin sin cos sin cos
2! 3!

x a x a
x a x a a a a

− −
= + − − − +"  

 c) ( ) ( )2

cos cos sin
2!

x a
x a x a a

−
= − − −  

 d) ( )
2 3

2 3ln ln
2 3

x x xa x a
a a a

+ = + − + +" 

110 Expand lnx in powers of ( to four terms. )2x −

111 Expand tan x in powers of 
4

x π⎛ −⎜
⎝ ⎠

⎞
⎟ to three terms 

112 Expand sin x in powers of 
6

xπ⎛ ⎞+⎜
⎝ ⎠

⎟ to four terms. 
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Indefinite Integral 
 

1 Antiderivative or Indefinite Integral 
Problem: Given a function ( )f x , find a function ( )F x whose derivative is equal to ( )f x ; 

that is .  ( ) ( )F x f x′ =
Definition1  
We call the function ( )F x  a antiderivative of the function ( )f x on the interval [ ],a b if

( ) ( ) [ ], ,a b∈F x f x x′ = ∀ .  
Definition2 
We call indefinite integral of the function f, which is denoted by ( )f x dx∫ , all the expressions 

of the form where is a primitive of( )F x C+ ( )F x ( )f x . Hence, by the definition we have 

  ( ) ( )f x dx F x C= +∫  
C is called the constant of integration. It is an abitrary constant. 
From the definition 2 we obtain 

 1. If ( ) ( )F x f x′ = , then ( )( ) ( )( ) ( )f x dx F x C f x′ ′= + =∫  

 2.  ( )( ) ( )d f x dx f x dx=∫
 3. ( ) ( )dF x F x C= +∫  

2 Table of Integrals 

1. 
1

, 1
1

r
r xx dx C r

r

+

= + ≠
+∫ −  

2. lndx x C
x
= +∫  

3. ( )2 2

1 1arctan cot , 0dx x xC arc C a
x a a a a a

= + = − +
+∫ ≠  

4. (2 2

1 ln , 0
2

dx x a C a
x a a x a

−
= +

− +∫ )≠   

5. ( )2 2

1 ln , 0
2

dx a x C a
a x a a x

+
= +

− −∫ ≠  

6. 2 2

2 2
lndx x x a C

x a
= + ± +

±
∫  

7. ( )
2 2

arcsin arccos , 0dx x xC C
a aa x

= + = − +
−

∫ a >  

8. 1

2
sinh

1
dx x c
x

−= +
+

∫
 

9. 1

2
cosh

1
dx x c
x

−= +
−

∫  

10. ( ), 0
ln

x
x aa dx C a

a
= + >∫   

11.  x xe dx e C= +∫

1 
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12. sin cosxdx x C= − +∫  
13. cos sinxdx x C= +∫  
14. sinh coshxdx x c= +∫  

15. cosh sinhx x c= +∫  
16. 2 tanh

cosh
dx x c

x
= +∫   

17. 2 tan
cos

dx x C
x
= +∫  

18. 2 coth
sinh

dx x c
x
= − +∫  

19. 2 cot
sin

dx x C
x
= − +∫  

20. ln tan ln csc cot
sin 2
dx x C x x

x
= + = −∫ C+  

21. ln tan ln tan sec
cos 2 4

dx x C x x
x

π⎛ ⎞= + + = +⎜ ⎟
⎝ ⎠∫ C+  

3. Some Properties of Indefinite Integrals 
Linearity 
1. ( ) ( ) ( ) ( ) ( ) (1 2 1 2n n )f x f x f x f x dx f x dx f x dx⎡ ⎤+ + + = + + +⎣ ⎦∫ ∫ ∫" " ∫  

 2. If a is a constant, then ( ) ( )af x dx a f x dx=∫ ∫  
Moreover,  

3. If ( ) ( )f x dx F x C= +∫ , then ( ) ( )1f ax dx F ax C
a

= +∫  

4. If ( ) ( )f x dx F x C= +∫ , then ( ) ( )f x b dx F x b C+ = + +∫  

5. If ( ) ( )f x dx F x C= +∫ , then  ( ) ( )1f ax b dx F ax b C
a

+ = +∫ +  

Example 1 

1. ( )32 3sin 5x x x d− +∫ x  ans: 41 103cos
2 3

x x x x C+ + +  

2. 4
3

3 1
2

x x dx
x x

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠∫  ans: 2 23 49 4
2 9

x x x x C+ + +  

3. 
3

dx
x +∫  ans: ln 3x C+ +  

4. cos 7xdx∫  ans: ( )1 sin 7
7

x c+  

5. ( )sin 2 5x dx−∫  ans: ( )1 cos 2 5
2

x c− − +  

 
4 Integration By Substitution 
4.1 Change of Variable in an Indefinite Integral 
Putting ( )x tϕ= where t is a new variable and ϕ is a continuously differentiable function, we 
obtain 
 

2 



Lecture Note  Indefinite Integral 

( ) ( ) ( )f x dx f t tϕ ϕ′= ⎡ ⎤⎣ ⎦∫ ∫ dt  (1) 
The attempt is made to choose the function ϕ in such a way that the right side of (1) becomes 
more convenient for integration. 
 
Example 1 Evaluate the integral 1I x x dx= −∫  
Solution 
Putting 1t x= − , whence and dx=2tdt. Hence,  2 1x t= +

( ) ( )
( ) ( )

5 3
2 2

2 4 2 2 2
5 3

2 2
5 3

1 1 2 2

1 1

5 3x x dx t t tdt t t dt t t

x x c

− = + ⋅ = + = +

= − + − +

∫ ∫ ∫  

Sometimes substitution of the form ( )u ϕ= x are used. Suppose we succeeded in transorming 

the integrand ( )f x dx to the form  

( ) ( )f x dx g u du=  

where . If ( )u xϕ= ( )g u du∫ is known, that is,  

( ) ( )g u du F u k= +∫ ,  
then 

( ) ( )f x dx F x cϕ= +⎡ ⎤⎣ ⎦∫  

Example 2 Evaluate (1)
5 2
dx
x −∫  (2) 

32 xx e dx∫  

Solution 

Putting ; 5 2u x= −
15 ;
5

du dx dx du= = , we obtain (1) 
1
2

1
2

1 1 2 5 2
5 5 55 2

dx du u c x
x u

= = + = −
−∫ ∫ c+  

 
4.2 Trigonometric Substitutions 
 1) If the integral contains the radical 2a x2− , we put sinx a t= ; whence 

2 2 cosa x a− = t  

 2) If the integral contains the radical 2 2x a− , we put secx a t= whence 
2 2 tanx a a t− =  

3) If the integral contains the radical 2 2x a+ , we put tanx a t=  whence 
2 2 secx a a+ = t  

We summarize in the the trigonometric substitution in the table below. 
 

Expression in 
the integrand Substitution Identities needed 

2 2a x−  sinx a t=  2 2 2 2 2sin cosa a t a− = t  
2 2a x+  tanx a t=  2 2 2 2 2tan seca a t a+ = t  
2 2  secx a t=  2 2 2 2 2sec tana t a a− = t  x a−

 

3 
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Example 3 Evaluate 
2 24

I dx
x x

=
−

∫
 

Solution 

Let 2sinx θ= , 
2 2
π πθ− ≤

 
θ

≤ 2cosdx dθ θ⇒ =  

2 x

24 x−

2 22 2

2
2

2cos 2cos
4sin 2cos 4 sin4sin 4cos

1 1 1 4csc cot
4 4 4

d dI

xd C C
x

1 dθ θ θ θ θ
θ θ θθ θ

θ θ θ

= =
⋅

−
= = − + = − ⋅ +

∫ ∫

∫

= ∫
 

    

Example 4 
2 2

dxI
x a

=
+

∫  

Solution
 

tan ,
2 2

x a π πθ θ= − < <   2secdx a dθ θ=  
2 2x a+

x

 
2

2 2 2

sec
tan

a dI
a a

θ θ
θ

=
+

∫  
θ

a

     
2 2 2sec sec ln sec tan ln

sec
a d x a xd C

a a
θ θ θ θ θ θ
θ

+
= = = + + = +∫ ∫ C

a
+  

     2 2 2 2
1ln ln lnx a x a C x a x C= + + − + = + + +  

Example 5 Evaluate
2 25x dx
x
−

∫  

Solution 

Let 5secx θ=  

 sec tandx
d

θ θ
θ
=  or dx 5sec tan dθ θ θ=  

Thus, 

 

( )

( )

( )

2 2

2

2

25 25sec 25 5sec tan
5sec

5 tan
5sec tan 5 tan

5sec
5 sec 1 5 tan 5

x dx d
x

d d

d C

θ θ θ θ
θ

θ
θ θ θ θ θ

θ
θ θ θ θ

− −
=

= =

= − = − +

∫ ∫

∫ ∫

∫

 
x

2 25x −

θ
5

We obtain
2 25tan
5

xθ −
= . Hence

2
2 125 25 5sec

5
x xdx x C

x
−− ⎛ ⎞= − − +⎜ ⎟
⎝ ⎠∫

 

Example 6 Evaluate 
2

2

1x dx
x
+

∫  

4 
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5. Integration by Parts 
Suppose that u and v are differentiable function of x, then 
   ( )d uv udv vdu= +
By integrating, we obtain 
   uv udv vdu= +∫ ∫
Or  
   udv uv vdu= −∫ ∫
Example 
 1. sinx xdx∫  (letu )  ans:x= cos sinx x x C− + +   

 2. arctan xdx∫  (let ) ans: arctanu = x 21arctan ln 1
2

x x x C− + +  

 3. 2 xx e dx∫  (let )  ans: 2u x= ( )2 2 2xe x x C− + +  

 4. ( )2 7 5 cos 2x x+ −∫ xdx  ans: ( ) ( )2 sin 2 cos 2 sin 27 5 2 7
2 4 4

x x xx x x C+ − + + − +
 

6 Standard Integrals Containing a Quadratic Trinomial  
6.1 Integrals of the form 2

mx n dx
ax bx c

+
+ +∫ or

2

mx n dx
ax bx c

+

+ +
∫  where  2 4 0b ac− <

We proceed the calculation by completing square the trinomial and then use the appropriate 
formulas or substitutions.  
Example 1 

1. 2 2 5
dx

x x− +∫  ans: 11 1tan
2 2

x C− −⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

 2. 22 8 2
dx

0x x+ +∫  ans: 1 2arctan
2 6 6

x C+
+  

 3. 2 4 8
x dx

x x− +∫  ans: ( )2 11 2ln 2 4 tan
2 2

xx c− −⎛ ⎞⎡ ⎤− + + +⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 4. 2

3
2 5

x dx
x x

+
− +∫  ans: ( )21 1ln 2 5 2arctan

2 2
xx x C−

− + + +  

 5. 
2

5 3
4 10

x dx
x x

+

+ +
∫  ans: 2 25 4 10 7 ln 2 4 10x x x x x C+ + − + + + + +  

6.2  Integrals of the Form 
( ) 2

dx
mx n ax bx c+ +

∫
+

 

By means of the inverse substitution  
1 t

mx n
=

+
 

these integrals are reduced to integrals of the form 6.1. 

Example 2 Evaluate 
( ) 21 1

dx
x x+ +

∫ . Ans:
( )21 21 ln
12

x x

x

1− + +
−

+
 

6.3  Integrals of the Form 2ax bx cdx+ +∫  
By taking the perfect square out of the quadratic trinomial, the given integral is reduced to one 
of the following two basic integrals 

5 
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 1)
2

2 2 2 2 arcsin ; 0
2 2
x a xa x dx a x c a

a
− = − + + >∫  

 2)
2

2 2 2 2 2 2ln ; 0
2 2
x ax a dx x a x x a c a+ = + + + + + >∫  

Example 3 Evaluate 21 2x x dx− −  
 
7    Integration of Rational Functions 
7.1 The Undetermined Coefficients 
Integration of a rational function, after taking out the whole part, reduces to integration of the 
proper rational fraction 

( )
( )

P x
Q x

  (1) 

where ( )P x and ( )Q x are integral polynomials, and the degree of the numerator P(x) is lower 
than that of the denominator Q(x). If  

( ) ( ) ( )Q x x a x lα λ= − −"  

where a, …, l are real distinct roots of the polynomial Q(x), and , ,α λ" are root 
multiplicities, then decomposition of (1) in to partial fraction is justified: 

( )
( ) ( ) ( ) ( ) ( )

1 2 1 2
2 2

P x A LA A L L
Q x x a x lx a x a x l x

α λ

lα λ≡ + + + + + + + +
− −− − −

" " "
−

 (2) 

where 1 2 1 2, , , , , , , ,A A A L L Lα λ… … … are coefficients to be determined. 
Example 1 Find 

1) 
( )( )21 1

xdxI
x x

=
− +∫ Ans:

( )
1 1 1ln

2 1 4 1
x C

x x
−

− +
+ +

+  

2) 3 22
dxI

x x x
=

− +∫ Ans: 1ln ln 1
1

x x C
x

− − − +
−

 

 
If the polynomial Q(x) has complex roots a ib± of multiplicity k, then partial fractions of the 
form 

( )
1 1

2 2

k k
k

A x BA x B
x px q x px q

++
+ +

+ + + +
"

  

(3) 

will enter into the expansion (2). Here, 
( ) ( )2x px q x a ib x a ib+ + = − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

and are undetermined coefficients. For k=1, the fraction (3) is integrated 
directly; for k>1, we use reduction method; here it is first advisable to represent the quadratic 

trinomial 

1 1, , , ,k kA B A B…

2x px q+ + in the form 
2 2

2 4
p px q

⎛ ⎞⎛ ⎞+ + −⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎟and make the substitution 
2
px z+ = . 

Example 2 Find  

( )22

1

4 5

x dx
x x

+

+ +
∫  

Ans: ( ) ( )1
2

3 1 tan 2
22 4 5

x x C
x x

−+
− − +

+ +
+  

7.2 The Ostrogradsky Method 

6 
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If Q(x) has multiple roots, then  
( )
( )

( )
( )

( )
( )1 2

P x X x Y x
dx dx

Q x Q x Q x
= +∫ ∫   (4) 

where is the greatest common divisor of the polynomial Q(x) and it derivative ( )1Q x ( )Q x′ ; 

( ) ( ) ( )2 1:Q x Q x Q x=  
X(x) and Y(x) are polynomials with undetermined coefficients, whose degrees are, 
respectively, less by unity than those of ( )1Q x and ( )2Q x .  
The undetermined coefficients of the polynomials X(x) and Y(x) are computed by 
differentiating the identity (4).  
Example 3 Find 

( )23 1

dxI
x

=
−

∫  

Solution 

( )
2 2

2 3 33 1 11

dx Ax Bx C Dx Ex Fdx
x xx

+ + + +
= +

− −−
∫ ∫  

Differentiating this identity, we get 

( )
( )( ) ( )

( )

3 2 2 2

2 2 33 3

2 1 31
11 1

Ax B x x Ax Bx C Dx Ex F
xx x

+ − − + + + +
= +

−− −
 

or 
( )( ) ( ) ( )( )3 2 2 2 31 2 1 3 1Ax B x x Ax Bx C Dx Ex F x= + − − + + + + + −  

Equating the coefficients of the respective degrees of x, we will have 
0; 0; 2 0; 3 0; 2 0; 1D E A F B D C E A B F= − = − = + = + = + = −  

whence 
1 20; ; 0; 0; 0;
3 3

A B C D E F= = − = = = = −  

and, consequently, 

( )2 33

1 2
3 1 31

dx x dx
x xx

= − − 3 1− −−
∫ ∫  (5) 

To compute the integral on the right of (5), we decompose the fraction  

3 2

1
1 1 1

L Mx N
x x x x

+
= +

− − + +
 

we will find 
1 1, ,
3 3

L M N 2
3

= = − = − . 

Therefore, 

( )2 1
3 2

1 1 2 1 1 1 2 1ln 1 ln 1 tan
1 3 1 3 1 3 6 3 3

dx dx x xdx x x x C
x x x x

−+ +
= − = − − + + −

− − + +∫ ∫ ∫ +  

and  

( ) ( ) ( )

2
1

2 233

1 1 2 2 1ln tan
93 1 3 3 311

dx x x x x C
x xx

−+ + +
= − + + +

− −−
∫  

 
8   Integration of a certain Irrational functions 

7 
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8.1 Integrals of the type
1 2

1 2, , ,
p p
q qax b ax bR x

cx d cx d

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎢ ⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠
⎣ ⎦

∫ … dx⎥ where  is a rational function 

and are integer numbers. We use the substitution 

R

1 1 2 2, , , ,p q p q … nax b
d

z
cx

+
=

+
 where n is the 

least common multiple (lcm) of  1 2, ,q q …

Example 1  Evaluate 
42 1 2 1

dx
x x− − −∫  

Solution 
let 42 1x z− = , then , and hence 32dx z dz=

( )

( ) ( )

3 2
2

24

2 2
4 4

2 12 2 1 1 2ln 1
1 12 1 2 1

1 2 1 ln 2 1 1

dx z dz z dz z dz z z C
z z z zx x

x x C

⎛ ⎞= = = + + = + + −⎜ ⎟− − −− − − ⎝ ⎠

= + − + − − +

∫ ∫ ∫ ∫ +
 

Example 2  Evaluate 
34 1
xdx

x +
∫  answer: ( )3 34 44 ln 1

3
x x C⎡ ⎤− + +⎢ ⎥⎣ ⎦

 

8.2  Integrals of differential binomials ( ) pm nx a bx dx+∫  where m, n and p are rational 
numbers.  

 If 1m
n
+ is an integer, let where s is the denominator of the fractionna bx z+ = s rp

s
=   

 If 1m p
n
+

+ is an integer, let n sax b z− + =  

Example 3  Evaluate 
( )

3

3
2 2

x dx

a bx+
∫  

Solution 

We have
( )

( )
33

3 2 2
3

2 2

x dx x a bx dx
a bx

−
= +

+
∫ ∫ . We see that 3, 2, 3, 2m n r s= = = − =  and 1 2m

n
+

=

, an integer. Then assume  

2a bx z+ = 2 , then 
( )

( )
3
2

11 22

1
2 2

2 3

2
,  and z a zdzx dx a bx z

b b z a

⎛ ⎞−
= = +⎜ ⎟
⎝ ⎠ −

=  

Hence,  

 

( ) ( )
( ) ( )

3 2

3 1 31
2 22 2 2

2 1
2 2

2

2 2

1

1 11

1 2

x z a zdzdx
b za bx b z a

az dz z az C
b b

a bx C
b a bx

− −

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠+ −

= − = +

+
= +

+

∫ ∫

∫ +  

Example 4 Work out 
( )( )

1
2 2 2

34 2

2 1 1
31

x xdx C
xx x

− +
= +

+
∫

 
 

8 
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8.3 Integral of the Form 
( )

2

nP x
dx∫ ax bx c+ +  

(1) 

where is a polynomial of degree n ( )nP x
Put  

( ) ( ) 2
12 2

n
n

P x dxdx Q x ax bx c
ax bx c ax bx c

λ−= + + +
+ + + +

∫ ∫  (2) 

where is a polynomial of degree ( )1nQ x− ( )1n− with undetermined coefficients are λ is 

number. The coefficients of the polynomial ( )x1nQ − and the number λ are found by 
differentiating identity (2). 
Example 5  Find 2 2 4x x d+∫ x

 
 

Solution 

( )
4 2

2 2 3 2 2

2 2

44 4
4 4

x x dx x dx dx Ax Bx Cx D x
x x

λ+
+ = = + + + + +

+ +
∫ ∫ ∫

x  

whence 

( ) ( )3 24 2
2 2

2 2

4 3 2 4
4 4

Ax Bx Cx D xx x Ax Bx C x
x x

λ+ + ++
= + + + + +

+ + 2 4x +
 

Multiplying by 2 4x + and equating the coefficients of identical degrees of x, we obtain 
1 1; 0; ; 0;
4 2

A B C D λ= = = = = −2  

Hence,  

( )
3

2 2 2 224 4 2ln
4

x x 4x x dx x x x+
+ = + − + + +∫ C  

8.4  Integral of the form 

( ) 2n

dx
x ax bx cα− +

∫
+

 (3) 

They are reduced to integrals of the form (1) by the substitution  
1 t

x α
=

−
 

Example 6 Find 
5 2 1

dx
x x −
∫  

9   A Certain Trigonometric Integrals 
9.1  Integral of the Form sin  and cosn nxdx xdx∫ ∫  

If n is an odd positive integer, use the identity 2 2sin cos 1x x+ =  

Example 1 Find 5sin xdx∫  

Solution  
5 4sin sin sinxdx x xdx=∫ ∫  

9 
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( )
( )
( ) ( )

2

2 4

2 4

3 5

1 cos sin

1 2cos cos sin

1 2cos cos cos

2 1cos cos cos
3 5

x xdx

x x xdx

x x d x

x x x

= −

= − +

= − − +

= − + − +

∫
∫
∫

C

 

 If n is even, use half-angled identities 2 1 cos 2sin
2

xx −
= and 2 1 cos 2cos

2
xx +

=  

Example 2 Find 4cos xdx∫  

Solution 

 
2

4 1 cos 2cos
2

xxdx dx+⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫  

  ( ) ( ) ( )21 1 1 11 2cos 2 cos 2 cos 2 2 1 cos 4
4 4 4 8

x x dx dx xd x x dx= + + = + + +∫ ∫ ∫ ∫  

  ( ) ( )3 1 1cos 2 2 cos 4 4
8 4 32

dx xd x xd x= + +∫ ∫ ∫
3 1 1sin 2 sin 4
8 4 32

x x x C= + + +  

 Type2: ( )sin cosm nx xdx∫  

 If either m or n is odd positive integer and other exponent is any number, we factor 
out sinx or cosx and use the identity 2 2sin cos 1x x+ =  

Example 3 Find 3 4sin cosx xdx−∫  

Solution   

( ) ( ) ( )3 4 2 4 4 2sin cos 1 cos cos sin cos cos cosx xdx x x xdx x x d x− − − −= − = − −∫ ∫ ∫  
 

      ( ) ( )3 1
3cos cos 1 sec sec

3 1 3
x x

C x x
− −⎡ ⎤

= − − + = − +⎢ ⎥
− −⎢ ⎥⎣ ⎦

C  

 If both m and n are even positive integers, we use half-angle identities to reduce the 
degree of the integrand. 

Example 4 Find 2 4sin cosx xdx∫  

Solution 

( )

( ) ( )

2
2 4

2 3

2

1 cos 2 1 cos 2sin cos
2 2

1 1 cos 2 cos 2 cos 2
8
1 11 cos 2 1 cos 4 1 sin 2 cos 2
8 2

x xx xdx dx

x x x dx

x x x

− +⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= + − −

⎡ ⎤= + − + − −⎢ ⎥⎣ ⎦

∫ ∫

∫

∫ x dx

 

10 
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( ) ( )

( ) ( )

2

2

2

3

1 11 cos 2 1 cos 4 1 sin 2 cos 2
8 2
1 1 1 cos 4 sin 2 cos 2
8 2 2
1 1 1 1cos 4 4 sin 2 sin 2
8 2 8 2
1 1 1 1sin 4 sin 2
8 2 8 6

x x x

x x x dx

dx xd x xd x

x x x C

⎡ ⎤= + − + − −⎢ ⎥⎣ ⎦
⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤= − +⎢ ⎥⎣ ⎦
⎡ ⎤= − + +⎢ ⎥⎣ ⎦

∫

∫

∫ ∫ ∫

x dx

 

9.2   Integral of the Form  sin cos , sin sin , cos cosmx nxdx mx nxdx mx nxdx∫ ∫ ∫
To handle these integrals, we use the product identities  

1/. ( ) ( )1sin cos sin sin
2

mx nx m n x m n x= + + −⎡ ⎤⎣ ⎦  

2/. ( ) ( )1sin sin cos cos
2

mx nx m n x m n x= − + − −⎡ ⎤⎣ ⎦  

3/. ( ) ( )1cos cos cos cos
2

mx nx m n x m n x= + + −⎡ ⎤⎣ ⎦  

Example 5  Find sin 2 cos3x xdx∫  

Solution  

 
( ) ( )1 1sin 2 cos3 sin 5 sin sin 5 5 sin

2 10
1 1cos5 cos

10 2

1
2

x xdx x x xd x xdx

x x C

= + − = −⎡ ⎤⎣ ⎦

= − + +

∫ ∫ ∫ ∫

m

 

 
9.3   Integrals of the Form tan or cotm xdx xdx∫ ∫ where m is a positive number 
We use the formula  

2 2tan sec 1x x= − or 2 2cot csc 1x x= −  
Example 6 Evaluate 4tan xdx∫  
Solution 

( ) ( )
3 3

4 2 2 2 2

3

tan tantan tan sec 1 tan sec 1
3 3

tan tan
3

x xxdx x x dx xdx x dx

x x x C

= − = − = − −

= − + +

∫ ∫ ∫ ∫
 

 
10   Integrals of the types (sin , cos )R x x d∫ x   where is a rational function.  R

 We can use the substitution tan
2
x t= and hence we have  

 
2

2 2

2 1sin , cos
1 1

t tx x
t t

−
= =

+ +
,  2

2
1

dtdx
t

=
+

 

Example 1 Calculate 
1 sin cos

dx
x x+ +∫  

11 
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Solution  

 Let tan
2
x t= , then we obtain  

 
2

2

2 2

2
1 ln 1 ln 1 tan
2 1 1 21

1 1

dt
dt xtI t C C

t t t
t t

+= = = + + = +
− ++ +

+ +

∫ ∫ +  

If the equality ( ) ( )sin , cos sin ,cosR x x R x− − ≡

n

x is verified, then we can make the 

substitution ta x t= . And hence we have 
2 2

1sin , cos
1 1

tx x
t t

= =
+ +

 and 

2arctan ,x t
1

dtdx
t

= =
+

.  

Example 2 Calculate 21 sin
dxI

x
=

+∫  

Solution 

 Let
2

2
2 2tan ,sin ,

1 1
t dx t x dx

t t
= = =

+ +
t , then  

 
( )

( ) ( )22
2

2

1 1arctan 2 arctan 2 tan
1 2 2 21 1

1

dt dtI t C x
ttt

t

= = = + =
+⎛ ⎞

+ +⎜ ⎟+⎝ ⎠

∫ ∫ C+

 
11   Integration of Hyperbolic Functions 
Integration of hyperbolic functions is completely analogous to the integration of trigonometric 
function. The following basic formulas should be remembered 
 1) 2 2cosh sinh 1x x− =  

 2) ( )2 1sinh cosh 2 1
2

x x= −  

 3) ( )2 1cosh cosh 2 1
2

x x= +  

 4) 1cosh sinh sinh 2
2

x x x=  

Example 1 Find 2cosh xdx∫  
Solution 

( )2 1 1cosh cosh 2 1 sinh 2
2 4

x
2

xdx x dx x C= + = +∫ ∫ +  

Example 2  Find 1) 3sinh coshx xdx∫  2) sin
cosh 2

xdx
x∫  3) 2 2sinh coshx xdx∫  

12 Trigonometric and Hyperbolic Substitutions for Finding Integrals of the Form 

( )2,R x ax bx c dx+ +∫  (1) 

where R is a rational function. 
Transforming the quadratic trinomial 2ax bx c+ + into a sum or difference of squares, the 
integral (1) becomes reducible to one of the following types of integrals 

 1) ( )2 2,R z m z dz−∫   2) ( )2 2,R z m z dz+∫   ( )2 2,R z z m dz−∫  

The latter integrals are, respectively, taken by means of substitutions 
 1)  sin or tanhz m t z m t= =

12 
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2)  tan or sinz m t z m t= =
 3)  sec  or coshz m t z m t= =
 

Example 1 find
( )2 21 2

dxI
x x x

=
+ +

∫ 2+

1

 

Solution 
We have . Putting ( )22 2 2 1x x x+ + = + + 1 tanx z+ = , we then have and  2secdx zdz=

( ) ( )

2 2

2 22 2

sec cos 1 2 2
tan sec sin sin 11 1 1

dx zdz z x xI dz C C
z z z z xx x

+ +
= = = = − + =

++ + +
∫ ∫ ∫ +  

 
Example 2 Find 2 1x x x d+ +∫ x  
Solution 
We have  

2
2 1 31

2 4
x x x⎛ ⎞+ + = + +⎜ ⎟

⎝ ⎠
 

Putting  
1 3 3sinh  and cosh
2 2 2

x t dx td+ = = t  

we obtain 

2 2

3 3
2

3 1 3 3 3 3 3sinh cosh cosh sinh cosh cosh
2 2 2 2 8 8

3 3 cosh 3 3 3 cosh 3 1 1cosh sinh cosh
8 3 8 8 3 8 2 2

I t t tdt t tdt tdt

t ttdt t t t C

⎛ ⎞
= − ⋅ = −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞= − = − + +⎜ ⎟
⎝ ⎠

∫ ∫

∫

∫
 

Since 22 1 2sinh ,cosh 1
23 3

t x t x x⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

+ and 21 2ln 1 ln
2 3

t x x x⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠

 

we finally have  

( )
3
22 21 1 1 3 11 1 ln

3 4 2 16 2
I x x x x x x x x⎛ ⎞ ⎛= + + − + + + − + + + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
2 1⎞⎟

⎠

)

 

 
Exercises 
Using basic formulas to evaluate integrals 

1. ( 26 8 3x x d+ +∫ x   8. 22 3
xdx
x +∫  

2. ( )( )x x a x b dx+ +∫  

3. ( )23a bx dx+∫   
9. 2 2 2

ax b dx
a x b

+
+∫   

10.
2

61
x dx

x+∫  
4.

2 2

4

2 2
4

x x dx
x

+ − −

−
∫  

5.   3x xe dx∫ 11.
2

6 1
x dx
x −

∫   

6. 1 3
3 2

x dx
x

−
+∫  

7. a bxdx−∫   

12. 2

arcsin
1

xdx
x−∫  

  



Lecture Note  Indefinite Integral 

13.
( ) ( )2 21 ln 1

dx

x x x+ + +
∫   

14.  ( )t te e d−−∫ t

15.
2x x

a ae e d
−⎛ ⎞

+⎜ ⎟
⎝ ⎠
∫ x   

16.
( )2x x

x x

a b
dx

a b
−

∫  

17. ( )2 1xe xd− +

∫ x   

18.
2

7xx dx⋅∫  

19. 2

3 2
5 7

x dx
x
−
+∫   

20.
2

3 1
5 1
x dx
x
+

+
∫  

21.
1

x

x

e dx
e −∫   

22. x xe a be dx−∫  

23. ( )sin ln dxx
x∫   

24. 5

cos
sin

ax dx
ax∫  

25. 21 3cos sin 2x xdx+∫  

26. 2

arctan
2

4

x

dx
x+∫  

27. 2

arctan 2
1 4

x xdx
x

−
+∫  

28.  ( )2sec ax b dx+∫
29. 5 x dx

x∫  

30.
sin

dx
x
a

∫  

31. 2 2cos
xdx

x∫  

32. ( )2sin 1x x dx−∫  

33.
sin cos

dx dx
x x∫  

34. sin 3x
3 cos3

dx
+∫  

x

35.
2 2

sin cos
cos sin

x x dx
x x−

∫   

36. 2

1 sin 3
cos 3

x+
∫  dx

x
( )2sinh 5 cosh 5x x dx−∫  37.

38.
3

4

1
4 1

x dx
x x

−
− +∫  

39.
3

8 5
x dx

x +∫  

2

2

3 2 3
2 3

x dx− +
∫40.  

x+

41. 2ln
dx

x x∫
sin cosxa xdx

 

∫  42.

43.
2

3 3 1
x dx

x +
∫  

44.
41

xdx
x−

∫  

45.
2

2

sec
4 tan

xdx
x−

∫  

46.
3 1 ln xdx

x
+

∫  

47.
( )arctan 2

2

ln 1 1
1

xe x x
dx

x
+ + +

+∫  

48.
2

2 2
x dx

x −∫  

49.
2

5 3
4 3

x dx
x

−

−
∫  

50.
1x

dx
e +∫  

51.
2

arccos
2

4

x

dx
x−

∫
 

52. Applying the indecated substitutions, find the following integrals 

a)
2

1,
2

dx x
tx x

=
−

∫  

 b) , l
1x

dx

 c) ( )72 25 3 ,5 3x x dx x t− − =∫  

 d) , 1
1

xdx t x
x

= +
+∫  

nx t
e

= −
+∫  

   

14 
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e) 
2

cos , sin
1 sin

xdx t x
x

=
+

∫
 

Applying the suitable substitution, compute the following integrals 

53. ( )2

2

arcsin

1

x
dx

x−
∫  

54. 2 1x x d+∫ x  

55.
22 3

xdx
x +

∫  

56. 1 x dx
x

+
∫  

57.
1

dx

x X+
∫  

58.
21 arcsin
dx

x x−
∫  

59.  ( )102 5 , 2x x dx t x+ =∫

60. 21 ,
1

x dx x t
x

+
=

+∫  

61.
2 1
dx

x x +∫  

62. 2, 1
1

x

x

dx t e
e

= −
−

∫  

5+

63. x dxln 2
ln 4x x∫  

64.
2

1

x

x

e dx
e +

∫  

65.
3sin

cos
xdx

∫ x  

66. Find the integral 
( )1
dx

x x−∫ by applying the substitution 2sinx t=  

67. Find the integral 2 2a x d+∫ x  by applying the substitution sinhx a t=  
By using the fomula of integration by parts 

68. ln xdx∫  

69. 1tan xdx−∫  

70. 1sin xdx−∫  

71. sinx xdx∫  

72. cos3x xdx∫  

73. x

x dx
e∫  

74. 2 xx dx−⋅∫  

75. 2 lnx xdx∫  

76. 2ln xdx∫  

 77. 1tanx xdx−∫  

78. arcsinx xdx∫  

79. ( )2ln 1x x dx+ +∫  

80. 2sin
xdx

x∫  

81. sinxe xdx∫  

82. 3 cosx xdx∫  

83. ( )sin ln x dx∫  

84. ( )2arcsin x dx∫  

Integration involving quadratic trinomial expression 

85. 22 5
dx

7x x− +∫  

86. 2 2 5
dx

x x+ +∫  

87. 2 2
dx

x x+∫  

88. 23 1
dx

x x− +∫  

89. 2 7 13
xdx

x x− +∫  

90. 2

3 2
4 5

x dx
x x

−
− +∫  

91.
2

2 6 10
x dx

x x− +∫  

92.
2

dx dx
x x−

∫  

15 



Lecture Note  Indefinite Integral 

93.
2

3 6
4 5

x dx
x x

−

− +
∫  

94.
2

2 8
1

x dx
x x
−

− −
∫  

95.
25 2 1

x dx
x x− +

∫  

96.
21

dx
x x−
∫  

97.
2 1
dx

x x x+ +
∫  

98.
( ) 21 2

dx
x x− −

∫  

Find the Integrals  

108.
( )(

16 

)
dx

x a x b+ +∫  

109.
2

2

5 9
5 6

x x dx
x x
− +
− +∫  

110.
( )( )( )1 2

dx
x x x+ + +∫ 3

 

111.
( )( )( )

22 41 91
1 3 4
x x dx

x x x
+ −

− + −∫  

112.
3

3 2

5 2
5 4
x dx

x x x
+

− +∫  

 113.
( )21

dx
x x +∫  

114. ( )( )2 24 3 4 5
dx

x x x x− + + +∫  

115. 3 1
dx

x +∫  

116.
( )22

3 5

2 2

x dx
x x

+

+ +
∫  

Ostrogradsky’s Method 

113.
( )

7

22

2

1

x dx
x x

+

+ +
∫  

Ans: ( )
4 3 2

2
2

2 2 1 2arctan 2 ln 1 2
1 43 3

x x x x x
3 2

x x x
x x

+
+ − + + + − + + +

+ +
C  

114.
( )

( ) ( )

2

22 2

4 8

1 1

x x
dx

x x

−

− +
∫  Ans:

( )( )
( )22

22

13 ln arctan
11 1

xx x x C
xx x
−−

+ + +
+− +

 

115.
( )

( )( )

22

32

1

1 1

x dx

x x

−

+ +
∫   Ans:

( )
( )
( )2 22

21 1 arctan
44 12 1

xx x C
xx

−+
+ + +

++
 

116.
( )24 3 1

dx

x x +
∫   Ans:

( )
3

3 3 3

2 1 1 1ln
3 3 3 1

x C
x x x
+

− − +
+

 

117.
( )32 2 10

dx

x x+ +
∫  Ans: ( ) ( )

( )22 2

3 1 18 11 1arctan
648 3 2 10 2 10

x xx C
x x x x

⎡ ⎤+ ++⎢ ⎥+ + +
⎢ ⎥+ + + +⎣ ⎦

 

118. ( )
( )32

2

2 2

x dx

x x

+

+ +
∫  Ans: ( )

( )22 2

3 3 1arctan 1
8 8 2 2 4 2 2

x xx C
x x x x

+
+ + +

+ + + +
+  

119.
( )

4

32 2

3 4

1

x dx
x x

+

+
∫   Ans:

( )
4 2

22

57 103 32 57 arctan
88 1

x xC x
x x

+ +
− −

+
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Compute integrals of the form
1 2

1 2, , ,
p p
q qax b ax bR x d

cx d cx d

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠
⎣ ⎦

∫ … x

 

120.
3

1
x dx
x −∫  

121.
2

x dx
x +∫  

122.
3

xdx
ax b+∫  

123.
( )2 1

dx
x x− −∫

 
124.

( )31 1

dx

x x+ + +
∫  

125.
3

dx
x x+∫  

126.
( )2

1 2
1 1
x dx

x x
+ +

+ − +∫
 

 

127.
( )2

1 2
1 1
x dx

x x
+ +

+ − +∫
 

Integration of binomial differentials 

128. ( )
3

3 2 21 2x x d
−

+∫

17 

x  

129.
3 51

dx
x x+
∫  

130.
4 21

dx
x x+
∫  

131.
( )

5
2 3 32

dx

x x+
∫  

Trigonometric Integrals 
132. 2cos xdx∫  

133. 5sin xdx∫  

134. 2 3sin cosx xdx∫  

135. 3 5sin cos
2 2
x xdx∫  

136. 2 2sin cosx xdx∫  

137.
5

3

cos
sin

xdx
x∫  

138. 3sin xdx∫  

139. 2 2sin cosx xdx∫  

140. 2 4sin cosx xdx∫  

141. 6cos
dx

x∫  

142. 2 4sin cos
dx
x x∫  

143.
2sin cos

2 2

dx
x x∫  

144. 5sin
dx

x∫  

145. sin 3 cos5x xdx∫  

146. sin10 sin15x xdx∫  

147. cos sin
2 2
x x dx∫  

148. 2sin sin
3 3
x xdx∫  

149. ( ) ( )cos cosax b ax b dx+ −∫  

150. ( )sin sint tω ω ϕ+∫  

Integral ( )sin ,cosR x x d∫ x  

151.
3 5cos

dx
x+∫  

156.
sin cos

dx
x x+∫  

157. cos
1 cos

x dx
x+∫  

158.
8 4sin 7 cos

dx
x x− +∫  

159.
cos 2sin 3

dx
x x+ +∫  

160.
( )3

sin
1 cos

x dx
x−∫  
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161. 1 tan
1 tan

xdx
x

+
−∫  

Integrations of hyperbolic function 
162. 3sinh xdx∫  

163. 4cosh xdx∫  

164. 3sinh coshx xdx∫  

165. 2 2sinh coshx xdx∫  

166. 2 2sinh cosh
dx
x x∫  

167. 3tanh xdx∫  

168. 2 2sinh cosh
dx

x x+∫   

Integral ( )2,R x ax bx c dx+ +∫  

169. 23 2x x dx− −∫  

27 

170. 22 x dx+∫  

171. 2 2 2x x d− +∫ x  

172. 2 4x dx−∫  

173. 2x xdx+∫  

174. 2 6 7x x d− − x∫  

175. ( )
3

2 21x x d+ + x∫  

176.
( ) 21 3

dx
x x x 2− − +

∫  
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Definition Integral 
 

1. Riemann Sum 
Let ( )f x be a function defined over the close interval a x b≤ ≤ with 

be an arbitrary partition in n subinterval. We called the 
Riemann Sum of the function 

0 1a x= < nx x b< < =…

( )f x over[ ],a b  the sum of the form 

  ( )
1

n

n i
i

S f ξ
=

= Δ∑ ix

where 1 1, , 1, 2,...,i i i i i ix x x x x i nξ− −≤ ≤ Δ = − = .  
 
 
 

( )y f x= 
 
 
 
 
 
 
 
 
2. Definite Integral 
The limit of the sum when the number of the subinterval n approaches infinity and 
that the largest 

nS

ixΔ approaches zero is called definite integral of the function ( )f x
with the upper limit x b= and lower limit x a= . 

 ( ) ( )
max 0 1

lim
i

n b

i i ax i
f x f xξ

Δ →
=

Δ =∑ ∫ dx  

or equivalently 

 ( ) ( )
1

lim
n b

i i an i
f x f xξ

→+∞
=

Δ =∑ ∫ dx  

If the function ( )f x is continuous on [ ],a b or if the limit exists, the function is said to 

be integrable on[ ],a b .  

If a is in the domain of f, we defined ( ) 0
a

a

f x dx =∫ and If f is integrable on[ ],a b , then we 

define ( ) ( )
a b

b a

f x dx f x dx= −∫ ∫ .  

Example 1  Find the Riemann Sum for the function nS ( ) 1f x x= + over the interval 

[ ]1,10 by dividing into n equal subintervals, and then find the limit .  lim
n

S
→∞ n

Solution  

 10 1 9
ix

n n
−

Δ = =  0
91i i i
ix x i x

n
ξ = = + Δ = +  

0a x=
1ξ nx b=nξ

1 
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and hence ( ) 9 91 1 2i
i if

n n
ξ = + + = +  

 

( )

( )

( )

1

1

2
1 1

2

2

9 92

18 811

18 81 1 2

18118
2

81 118 1
2

n

n i i
i

n

i

n n

i i

S f x

i
n n

i
n n

n n
n n

n n
n

n

ξ
=

=

= =

= Δ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= +

= + + + +

−
= +

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑

∑

∑ ∑

"
 

then  

 
81 1 81 117lim lim 18 1 18
2 2nn x

S
n→∞ →∞

⎛ ⎞⎛ ⎞= + − = + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ 2
 

 

Example 2 ( )3 2

1
2 8x dx

−
−∫  

Solution 

Divide the interval [ ]1,3− into n equal subintervals. Hence we obtain 4
ix

n
Δ = . In each 

subinterval[ ]1,i ix x− , choose iξ such that 0
41i i
ix i x

n
ξ = + Δ = − +  

( )

( ) ( )
( ) ( )( )

2

1 1

2

2
1

2

2
1

2

2 3
1

2 2 2
2 3

2 3

4 42 1 8

8 16 42 1 8

16 32 46

24 64 128

24 64 1281 2 1 2

1 1 2 164 12824
2

n n

i i
i i

n

i

n

i

n

i

if x
n n

i i
n n n

i i
n n n

i i
n n n

n n
n n n

n n n n n
n n

ξ
= =

=

=

=

⎡ ⎤⎛ ⎞Δ = − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤

= − − +⎢ ⎥
⎣ ⎦
⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠

= − − + + + + + + +

+ + +
= − − ⋅ + ⋅

∑ ∑

∑

∑

∑

" " n

2

6
1 128 3 124 32 1 2

6n n n
⎛ ⎞ ⎛ ⎞= − − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 
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( ) ( )
2 2

1
1

2

2 8 lim

1 128 3 1lim 24 32 1 2
6

128 4024 32
3 3

n

i in i

n

x dx f x

n n n

ξ
− →∞

=

→∞

− = Δ

⎛ ⎞⎛ ⎞ ⎛= − − + + + +⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= − − + = −

∑∫
⎞
⎟  

 
Subinterval property 
If f is intergrable on an interval containing the points a, b, and c, then  

  ( ) ( ) ( )
c b c

a a b
f x dx f x dx f x dx= +∫ ∫ ∫  

no matter what the order of a, b, and c. 
 
3. The first Fundamental Theorem of Calculus 
Theorem A First Fundamental theorem of Calculus 
Let f be continuous on the closed interval [ ],a b and let x be a variable point in ( ) , 
then  

,a b

 ( ) ( )
x

a

d f t dt f x
dx

=∫  

 
 
 

( )y f t=

  
 
 
 
 
Proof  

For ( , )x a b∈ we define , then  ( ) ( )
x

a
F x f t dt= ∫

( ) ( )

( ) ( )

( ) ( )

( )

0

0

0

lim

1lim

1lim

x

a

h

x h x

a ah

x h

xh

d f t dt F x
dx

F x h F x
h

f t dt f t dt
h

f t dt
h

→

+

→

+

→

′=

+ −
=

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫

∫ ∫

∫

 

But ( )
x h

x
f t dt

+

∫ represents the area bounded by x-axis the curve ( )f t between x and

x h+ , which is approximate to ( )hf x ; that is ( ) (
x h

x
)f t dt hf

+
≈∫ x . So,  

( ) ( ) ( )
0

1lim
x

a h

d f t dt hf x f x
dx h→

= =∫ . 

a x x h+

( )f x

3 
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Example1 
3 3
2 2

2 22 17 7

xd t xdt
dx t x

⎡ ⎤
=⎢ ⎥

+ +⎢ ⎥⎣ ⎦
∫  

Example2  

 

4 2 2

4

2 2

4

tan cos tan cos

tan cos tan cos

x

x

x

d dt tdt t tdt
dx dx

d t tdt x
dx

⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= − = −⎢ ⎥⎣ ⎦

∫ ∫

∫ x
 

Example3 Find ( )
2

1
3 1

xd t dt
dx

⎡ ⎤−⎢ ⎥⎣ ⎦∫  

Solution 
Let u x and hence  2 2du x= ⇒ =

 

( ) ( )

( )

( )

2

1 1

1

3

3 1 3 1

3 1

3 1 2 6 2

x u

u

d dt dt t dt
dx dx

d dt dt
du dx

u x x

⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦
= − = −

∫ ∫

∫
u

x

 

   
Theorem B Comparison Property  
If f and g are integrable on [ ],a b and if ( ) ( )f x g x≤  for all x in [ ],a b , then 

  ( ) ( )
b b

a a
f x dx g x dx≤∫ ∫  

Proof 
Over the interval[ ],a b , let there be an arbitrary partition a x0 1 nx x b= < < < =" . Let 

iξ be a sample point on the ith subinterval[ ]1,i ix x− , then we conclude that  

  

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1 1

lim lim

i i

i i i i

n n

i i i i
i i

n n

i i in ni i

b b

a a

f g

f x g x

f x g x

if x g

f x dx g x dx

ξ ξ

ξ ξ

ξ ξ

ξ ξ

= =

→∞ →∞
= =

≤

Δ ≤ Δ

Δ ≤ Δ

Δ ≤ Δ

≤

∑ ∑

∑ ∑

∫ ∫

x

 

Theorem C Boundedness Property 
 If f is integrable on [ ],a b and m f M≤ ≤ for all x in[ ],a b , then  

y
  m b  ( ) ( ) ( )

b

a
a f x dx M b a− ≤ ≤ −∫

xa

m

M
Proof ( )y f x=
Let ( ) [ ],m x a b= ∀ ∈ ,h x , then ( ) ( ) [ ], ,h x f x x a b≤ ∀ ∈ . 
Hence,  

  
( ) ( )

( ) ( )

b b

a a
b

a

h x dx f x dx

m b a f x dx

≤

− ≤

∫ ∫
∫

4 
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By similar way, let ( ) [ ],g x M x a b= ∀ ∈ , , then  

 

( ) ( ) [ ]
( ) ( )

( ) ( )

, ,
b b

a a
b

a

f x g x x a b

f x dx g x dx

f x dx M b a

≤ ∀ ∈

≤

≤ −

∫ ∫
∫

 

Therefore  ( ) ( ) (
b

a
m b a f x dx M b a− ≤ ≤ −∫ )

 
4. Second Fundamental Theorem of Calculus and Mean value theorem 
For Integrals 
Second Fundamental Theorem of Calculus 
Let f be integrable on [ ],a b and F be any primitive of f on[ ],a b , then  

  ( ) ( ) ( )
b

a
f x dx F b F a= −∫  

It is also known as Newton-Leibniz Formula. For convenience we introduce a special 
symbol for by writing ( ) ( )F b F a−

  ( ) ( ) ( ) b

a
F b F a F x− = ⎡⎣ ⎦⎤ or ( ) ( ) ( ) b

a
F b F a F x− =  

  

Example1 
535 2

2
2

125 8 117 39
3 3 3 3
xx dx = = − = =∫  

Example2 
4 4

34
0

0

sin 2 1sin 2 cos 2
8 8

xx xdx

π
π

= =∫  

  
Mean Value Theorem for Integral 
If f is continuous on[ ],a b , there is a number c between a and b such that 

  ( ) ( )( )
b

a
f t dt f c b a= −∫  

Proof 

Let  ( ) ( ) ,
x

a
F x f t dt a x b= ≤∫ ≤

By Mean value theorem for derivative, we obtain  

 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

0
b

a
b

a

F b F a F c b a

f t dt f c b a

f t dt f c b a

′− = −

− = −

= −

∫
∫

 

 

 ( ) ( )1 b

a
f c f

b a
=

− ∫ t dt is called the mean value, or average value of f on [ ],a b  

Example1 Find the average value of ( ) 2f x x= on the interval [ ]1,4  
Solution  

 ( ) ( )
4

2

1

1 1 1 21 7
4 1 3

b

ave
a

f x f x dx x dx
b a

= = =
− −∫ ∫ ⋅ =  

5 
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Example2 Find the average value of ( ) cos 2f x = x on the interval [ ]0,π  
 
5. Change of variable in definite integral 
If ( )f x is continuous over the close interval a x b≤ ≤ , if ( )x tϕ= is continuous and 

its derivative is ( )tϕ′ over the interval tα β≤ ≤ , where ( )a ϕ α= and ( )b ϕ β= and if 

( )f tϕ⎡⎣ ⎤⎦ is defined et continuous over the interval tα β≤ ≤ , then  

 ( ) ( ) ( )
b

a
f x dx f t t dt

β

α
ϕ ϕ′= ⎡ ⎤⎣ ⎦∫ ∫  

Example1 Find ( )2 2 2

0
0

a
x a x dx a− >∫  

Solution 

Let sin , cosx a t dx a= = t , arcsin , arcsin 0 0 and arcsin1
2

xt
a

πα β= = = = = . then we 

obtain 

 

( )

( )

2

2 2

2
2

2 2 2 2 2 2 2 2

0 0

4
4 2 2 2

0 0

4 4

0
0

sin sin cos

sin cos sin 2
4

11 cos 4 1 sin 4
8 8 4

a
x a x dx a t a a t a tdt

aa t tdt tdt

a at dt t

π

π π

π
π 4

16
aπ

− = −

= =

⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

∫

 

Example2 Evaluate 
4 2

0
 let 

1
dx x t

x
=

+∫ (answer: 4 2 ln 3− ) 

Example3 Evaluate 
ln 2 2

0
1  let 1x xe dx e z− −∫ = (answer: 2

2
π

− ) 

6. Integration by parts 
If the functions ( )u x and are continuous differentiable over ( )v x [ ],a b , we have 

 ( ) ( ) ( ) ( ) ( ) ( )
b bb

aa a
u x v x dx u x v x v x u x dx′ ′= −∫ ∫  

Example1 Evaluate 2

0
cosx xdx

π

∫  (answer: 1
2
π
− ) 

Example2 Evaluate 
1 3 2

0

xx e dx∫ (answer: 
2 3
8

e + ) 

Example3 Evaluate ( )
0

1sin  (answer: 1 )
2

xe xdx e
π π +∫  

 
7. Improper Integral 

Improper integrals refer to those involving in the case where the interval of 
integration is infinite and also in the case where f (the integrand) is unbounded at a 
finite number of points on the interval of integration.  
7.1 Improper Integral with Infinite Limits of Integration 

Let a be a fixed number and assume that ( )
N

a

f x dx∫ exists for all . Then if  N a≥

6 



Lecture Note  Definite Integral 

( )lim
N

N
a

f x dx
→+∞ ∫ exists, we define the improper integral ( )

a

f x dx
+∞

∫ by 

( ) ( )lim
N

N
a a

f x dx f x dx
+∞

→+∞
=∫ ∫  

The improper integral is said to be convergent if this limit is a finite number and to be 
divergent otherwise.  

Example Evaluate 2
1

dxI
x

+∞

= ∫  

Solution 

  2 2
1 1 1

1 1lim lim lim 1 1
NN

N N N

dx dx
x x x N

+∞

→+∞ →+∞ →+∞

⎛ ⎞ ⎛ ⎞= = − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ =  

Thus, the improper integral converges and has the value 1. 

Example Evaluate 
1

p

dx
x

+∞

∫  2

0

xxe dx
+∞

−∫  

Let b be a fixed number and assume ( )
b

t

f x dx∫ exists for all t b< . Then if 

( )lim
b

t
t

f x dx
→−∞ ∫ exists we define the improper integral 

( ) ( )lim
b b

t
t

f x dx f x dx
→−∞

−∞

=∫ ∫  

The improper integral ( )
b

f x dx
−∞
∫ is said to be converge if this limit is a finite number 

and to diverge otherwise. If both ( )
a

f x dx
+∞

∫ And ( )
a

f x dx
−∞
∫  

converge for some number a, the improper integral of ( )f x on the entire x-axis is 
defined by  

( ) ( ) ( )
a

a

f x dx f x dx f x dx
+∞ +∞

−∞ −∞

= +∫ ∫ ∫  

Example Evaluate 21
dx

x

+∞

−∞ +∫  (answer:π )  2 2 2
dx

x x

+∞

−∞ + +∫ (answer:π ) 

7.2 Improper Integrals with Unbounded Integrands 

 If f is unbounded at a and ( )
b

t

f x dx∫ exists for all t such that a t , then  b< ≤

( ) ( )lim
b b

t a
a t

f x dx f x dx
+→

=∫ ∫  

7 
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If the limit exists (as a finite number), we say that the improper integral converge; 
otherwise, the improper integral diverges. Similarly, if f is unbounded at b and 

( )
t

f

a b
x

y ( )y f x=

( )y g x=

A

a

x dx∫ a t bexists for all t such that < , then ≤

( ) ( )lim
b t

t b
a a

f x dx f x dx
−→

=∫ ∫  

If f is unbounded at c where the improper integral a c b< < ( )
c

a

f x dx∫ and ( )
b

c

f x dx∫  

both converge, then ( ) ( )
b

c

( )
b c

a a

f x d x dx f x dx= + ∫x f∫ ∫  

We say that the integral on the left diverges if either or both of the integrals on the 
right diverge.  

Example Find 
( )

1

2 3
0 1

dx
x −∫  

3

0 2
dx

x −∫  

 Note:  

 1. For x a≥ , if ( ) ( )0 f x g x≤ ≤ and if converges, then ( )
a

g x dx
+∞

∫ ( )
a

f x dx
+∞

∫

converge and ( ) ( )
a a

f x dx g x dx
+∞

≤∫ ∫
+∞

 

Example Investigate the convergence of ( )2
1 1 x

dx
x e

+∞

+∫  

 2. For x a≥ , if ( ) ( )0 f x g x≤ ≤ and if ( )
a

f x dx
+∞

∫ diverges, then

diverges.  

( )
a

g x dx
+∞

∫

Example Investigate the convergence of 
3

1

1x dx
x

+∞ +
∫  

 3.  If ( )
a

f x dx
+∞

∫ is convergent then ( )
a

f x dx
+∞

∫ is also convergent, specifically 

absolute convergent. 

Example Investigate the convergence of 3
1

sin xdx
x

+∞

∫  
8 Area Between Two Curves 
8.1 Area Between ( )y f x= and ( )y g x=  

If f and are continuous functions on the intervalg [ ],a b

, and if ( ) ( )f x g x≥ for all x in [ ],a b , then the area of 

the region bounded above by ( )xy f= , below by 

, on the left by line ( )xy g= x a= , and on the right by 
the line x b= is defined by 

( ) ( )
b

A f x g x d⎡ ⎤= −⎣ ⎦∫
a

x

8 



Lecture Note  Definite Integral 

Example1 Find the area of region bounded above by 6y x= + , bounded below by 

, and bounded on the sides by the lines 2y x= 0x = and 2x = . ans: 34
3

 

Example2 Find the area of the region enclosed between the curves and2y x=

6y x= + . 125
6

 

 
8.2 Area Between ( )x v y= and ( )x w y=  
If and v are continuous functions and if 

for all y in [
w
( )w y (v )y≥ ],c d , then the area of the 

region bounded on the left by ( )x v y= , on the right 

by ( )x w y= , below by , and above by y c= y d= is 
defined by c

d

( )v y ( )w y

 
( ) ( )

d

c

A w y v y dy⎡ ⎤= −⎣ ⎦∫ 
 
Example1 Find the area of the region enclosed by 2x y= and 2y x= − , integrating 

with respect to . (ans: y 9
2

) 

Example2  Find the area of the region enclosed by the curves 2y x= and 4y x= by 
integrating a/. with respect to x b/. with respect to y 
 
8.3 Area in Polar Coordinates 
 
  
  

θ α=
θ β=

( )r ρ θ=

A

θ α=
θ β=

( )1 r ρ θ= ( )2r ρ θ=

A ′ 
 
 
 
 

( ) ( )( )2 2
2 1

1
2

A d
β

α

ρ θ ρ θ′ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∫ 
  

( ) 21
2

A d
β

α

ρ θ θ⎡ ⎤= ⎣ ⎦∫ θ

Example Calculate the area enclosed by the cardioid 1 cosr θ= − (answer: 3
2
π ) 

Example Find the area of region that is inside the cardioid 4 4cosr θ= + and outside 
the circle (answer: 6r = 18 3 4π− ). 

 
9 Volume of Solid 
9.1 Volume By Cross Sections Perpendicular To The X-Axis 
Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x a=   
and x b= . If, for each x in the interval[ ],a b , the cross-sectional area of  S

9 
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Lecture Note  Definite Integral 

Example 4 Find the volume of the solid generated when the region between the 

graphs of ( ) 21
2

f x x= + and ( )g x x= over the interval [ ]0,2 is revolved 

about the x-axis. Ans: 69
10
π  

2.3.c Volumes By Disks Perpendicular To the y-axis 
 

( ) 2
d

c

V u xπ  dy⎡ ⎤= ⎣ ⎦∫  
 

 
 2.3.d Volumes By Washers Perpendicular To y-axis 
 
 
  ( ) ( )( )2 2

d

c

V u y v yπ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∫ dy
  

 
2.3.e Cylindrical Shells Centered on the y-axis  

Let R be the a plane region bounded above by a continuous curve , below 
by the x-axis, and on the left and right respectively by the lines 

( )y f x=
x a=  and x b= . Then 

the volume of the solid generated by revolving R about the y-axis is given by 

( )2
b

a

V xf xπ= ∫ dx  

Example 5 Find the volume of the solid generated when the region enclosed between 
y x= , and the x-axis revolved about the y-axis.  1, 4x x= =

Solution  
 Since ( ) , 1,f x x a b= = = 4 , then the volume of the solid is  

  [ ]
44 4 5

3 2 2

1 1 1

2 4 1242 2 2 32 1
5 5 5

dx x dx xV x π ππ π π= = = ⋅ = − =∫ ∫   

Example 6  Find the volume of the solid generated when the region R in the first 
quadrant enclosed between y x= and 2y x= is revolved about the y-axis. 
(Answer: 6π ) 

 
3 Length of a Plane Curve 
If f  is a smooth function on [ ],a b , then the arc length L of the curve ( )y f x= x a=  
to x b= is defined by  

( )
2

2
1 1

b b

a a

dyL f x dx
dx

⎛ ⎞′⎡ ⎤= + = + ⎜ ⎟⎣ ⎦ ⎝ ⎠∫ ∫ dx  

Similarly, for a curve expressed in the form ( )x g y= where g′ is continuous on [ ],c d
, the arc length L from to y c= y d= defined by 

( )
2

2
1 1

d d

c c

dxL g y dy dy
dy

⎛ ⎞′⎡ ⎤= + = + ⎜ ⎟⎣ ⎦
⎝ ⎠

∫ ∫  

11 



Lecture Note  Definite Integral 

Example 1 Find the arc length of ( ) 2f x x=  from ( )0,0 to ( )1,1  
Solution  
  ( ) ( )2 2f x x f x′= ⇒ = x  

  ( )
2

2 2 21 11 1 4
2 2

f x x ⎛ ⎞′⎡ ⎤ x+ = + = +⎜ ⎟⎣ ⎦ ⎝ ⎠
 

Then the arc length is defined by  

  

( )

21
2

0
1

2 2
2 2

0

1 1
2 2

1 1 1ln
2 2 2

1 15 ln 2 5
2 4

L x dx

x x x x

⎛ ⎞= +⎜ ⎟
⎝ ⎠

2⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

= + +

∫

 

  
If the curve is given in polar coordinate system ( ) ,r ρ θ α θ β= ≤ ≤  then the arc 
length of the curve is defined by 

( ) ( )
2

2 2 2 drL d r
d

β β

α α

dρ θ ρ θ θ
θ

⎛ ⎞′⎡ ⎤ ⎡ ⎤= + = + ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠∫ ∫ θ  

Example 2 Find the circumference of the circle or radius a.  
Solution  

As a polar equation this circle is denoted by r a= , 0 2θ π≤ ≤  

Then the arc length is 
2 2

22
0

0 0

2L a d a d a
π π

π aθ θ θ π= = = =∫ ∫  

Example 3  Find the length of the cardioid 1 cosr θ= −  
 
If the curve is defined by the parametric equation ( ) ( ) [ ], , ,x x t y y t t a b= = ∈ , then the 
length of the curve is  

( ) ( )2 2
b

a

L x t y t′ ′ dt⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫  

Example 4  Find the circumference of the circle of the radius r 
Solution  
Parametric form, the circle is defined by ( ) ( )cos , sinx t r t y t r= = t with [ ]0,2t π∈ , 
then  

  
2 2

2 2 2 2

0 0

cos sin 2L r t r tdt rdt
π π

rπ= + =∫ ∫ =  

Example 5 Find the arc length of the astroid ( ) ( )3 3cos , sinx t a t y t a= = t .(ans6a). 

4 Area of Surface of Revolution 
Let f be a smooth, nonnegative function on[ ],a b . Then the surface area S generated 

by revolving the portion of the curve ( )xy f= between x a= and x b= about x-axis is  

12 
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( ) ( ) 2
2 1

b

a

S f x f xπ ′ dx⎡ ⎤= + ⎣ ⎦∫  

For a curve expressed in the form ( )x g y= where g′ is continuous on [ ],a d and 

for , the surface area S generated by revolving the portion of the 
curve from to 
( ) 0g y ≥ c y d≤ ≤

y c= y d= about the y-axis is given by  

( ) ( ) 2
2 1

d

c

S g y g yπ ′⎡ ⎤= + ⎣ ⎦∫ dy  

Example1 Find the surface area generated by revolving the curve 21y x= − , 
10
2

x≤ ≤ about the x-axis.  

Solution  

  ( ) ( )2

2
1

1
xf x x f x
x

−′= − ⇒ =
−

. Thus,  

  
1 2 1 22

2
2

0 0

2 1 1 2
1

xS x dx dx
x

π π π= − + =
−∫ ∫ =  

Example2 Find the surface area generated by revolving the curve 3 3 ,0 2y x y= ≤ ≤  
about the y-axis.  
Solution  

  ( ) 33 13
3

y x x g y y= ⇒ = = . Thus, ( ) 2g y y′ = , then  

  

( ) ( )

2 2
3 4 3 4

0 0
2

3 24 3 2

0

1 22 1 1
3 3

2 1 1 17 1
3 6 9

S y y dy y y dy

y

ππ

π π

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

⎡ ⎤= + = −⎢ ⎥⎣ ⎦

∫ ∫ +

 

 
Exercises 
Work out the following integrals 

1.
2 3

0

8 ln 3
1 3

x dx
x

= −
+∫  

2.

1
16 4

1
0 4

8 4arctan 2
31

x dx
x

= +
+

∫  

3. 3 32
0

1sin cos
12

x xdx
π

=∫  

4. 44
0

4sec
3

d
π

θ θ =∫  

5. ( )
( )

2
329

23
3

2 3 38
22 3

x dx

x

π−
= +

− +
∫

 
 

13 
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6. 2
0 2 sin 3 3

dx
x

π π
=

+∫  

7.
2

3 21

3 44ln
3 2

x dx
x x
−

= −
+∫

3  

8.
1

0
arctan

4x x

dx e
e e

π
− = −

+∫  

9. 42
0

3sin
16

xdx
π π

=∫  

10. 4

0

3cos
8

xdx
π π

=∫  

11.
( )

2

1
ln 3

1 ln
e dx

x x
=

+∫  

12.
( )

2

21

2
31 ln

e dx
x x

=
+∫  

13.
1

20

9ln
3 2 8

xdx
x x

=
+ +∫  

14.
31

80 1 1
z dz

z 6
π

=
+∫  

15.
2

2
20 41

dx
x

π
=

−
∫  

16.
5

22 25 4
dx

x x
π

=
+ −

∫  

17. 32
0

2sin
3

xdx
π

=∫  

18.
2

ln 2
ln

e

e

dx
x x

=∫  

Find the derivative of the following functions 

19. , Ans: lnx ( )
1

ln
x

F x tdt= ∫
20.

0 41
x

t dt+∫ , Ans: 41 x− +  

21. , Ans:( )
2

2x t

x
F x e dt−= ∫

2 4

2x xe xe− −− +  

22. ( ) ( )2
1 cos

x

x

F x t= ∫ dt , Ans: 2 2

1 1 1cos cos
2

x
x x x

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

Work out the following integrals 

23.
1

20
1

1
xdx

x
=

−
∫  

24.  
0

1xe dx
∞ − =∫

25. ( )2 20
, 0

2
dx a

a x a
π+∞

= >
+∫  

14 



Lecture Note  Definite Integral 

26.
1

20 21
dx

x
π

=
−

∫  

27.  
1

0
ln 1xdx = −∫

28. 2 2 2
dx

x x
π

+∞

−∞
=

+ +∫  

29.
( )

9

2 30
9

1
dx

x
=

−∫  

30. 2
ln lne

dx
x x x

∞
=∫  

31. 2 20 2
dx

x a a
π∞

=
+∫  

32.
0 4x x

dx
e e

π∞

− =
+∫  

33. 22

1
ln ln 2
dx

x x
∞

=∫   

Compute the improper integrals (or prove their divergence) 

 34. 41

dx
x

∞

∫  

35.  
0

, 0axe dx a
∞ − >∫

36. 2

2
1

xdx
x

+∞

−∞ +∫  

37.
2

ln x dx
x

+∞

∫  

38.
( )21 1
dx

x x
∞

+∫  

39.
( )30 1

dx
x

∞

+∫   

40.
22 1

dx
x x

∞

−
∫  

41.
2 21a

dx
x x

∞

+
∫  

42.
2

0

xxe dx
∞

−∫  

43.
23

0

xx e dx
∞ −∫  

44. 21

arctan xdx
x

∞

∫  

45. 30 1
dx

x
∞

+∫  

46.
( )22 1

dx

x

+∞

−∞ +
∫
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47. For 1p ≤ , is 
1

ln
p

x dx
x

∞

∫ convergent? (Hint: ln 1
p p

x
x x

≥ for x e≥ ) 

48. For what values of k are the integrals
2 lnk

dx
x x

∞

∫  and 
( )2 ln k

dx
x x

∞

∫ convergent? 

49. For what values of k is the integral
( )

(,
b

ka

dx b a
b x

)<
−∫ convergent? 

50. Show that ( ) ( )
0

2
a a

a
f x dx f x dx

−
=∫ ∫ if ( )f x is even and if( ) 0

a

a
f x dx

−
=∫ ( )f x is odd. 

51. Show that 
2 2

0 0

2
x

x x ee dx e dx dx
x

∞ ∞ ∞ −
− −

−∞

= =∫ ∫ ∫  

52. Show that 
1 2

0 0

sin
arccos

dx xdx
x x

π

=∫ ∫  

53. ( ) ( )
2 2

0 0

sin cosf x dx f x dx

π π

=∫ ∫  

54. The Laplace Transformation of the function f is defined by the improper integral 

( ) ( ){ } ( )
0

stF s f t e f t
+∞

−= = ∫L dt . 

Show that for constant a (with 0s a− > ) 

a. { } 1ate
s a

=
−

L  b. { } aa
s

=L  c. { } 2

1t
s

=L  d. { } 2 2cos sat
s a

=
+

L  

e. { } 2 2sin aat
s a

=
+

L  

55. Find the first quadrant area under the curve 2xy e−=  (answer: 1
2

) 

56. Let R be the region in the first quadrant under 9xy = and to the right of 1x = . 
Find the volume generated by revolving R about the x-axis. (answer: 81π ) 

57. Derive a formula 21
3

V rπ= h for the volume of a right circular cone of height h 

and radius of base r. 

58. Let R be the region above the curve 3y x= under the line 1y = and between 
and 0x = 1x = . Find the volume generated by revolving R about a). x-axis, b). 

about y-axis.  

 (answer: a). 6
7
π , b). 3

5
π ) 

59. Find the area of the region between 3y x= and the lines y x= − and  1y =

60. Find the area of the region bounded by the curve siny x= , cosy x= and and 0x =
4x π=  (answer: 2 1− ) 

16 
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17 

261. Find the area of the region bounded by parabolas y x= and 2 x6y x= − + . 
(Answer: 9) 

62. Find the area of the region bounded by the parabola 2 2x y= + and the line 

. (answer: 8y x= −
125 ) 

6

62. Find the area of the region bounded by the parabolas 2y x x= − and . 2y x x= −

 (Answer: 1
3

) 

62. Find the arc length of the curve 
4

2

1
8 4
xy

x
= + from 1x =  to 2x = (ans: 33

16
) 

63. Find the arc length of the curve 2 3 2 3 4x y+ = from 1x = to 8x = (ans: 9) 

64. Find the arc length of the curve 46 3xy x= + from 1x = to 2x = (ans: 17
12

) 

65. Find the area inside the cardioid 1 cosr θ= + and outside 1r = (ans: 2
4
π
+ ) 

66. Find the area inside the circle sinr θ= and outside the cardioid 1 cosr θ= −  

67. Find the volume generated by revolving the ellipse 
2 2

2 2 1x y
a b

+ = about x-axis. 

Answer: 2

3
abπ4  
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Infinite Series 
 

1. SEQUENCES AND THEIR LIMITS 
 Sequences 
 A sequence { }na

n

is a function whose domain is a set of nonnegative integers and 
whose range is the subset of real number. The functional value are called terms of 
the sequence and is called the nth term, or general term of the sequence.  

1 2 3, ,a a a …
a

 
 Limit of the sequence 
 If the terms of the sequence approach the number L as n increases without bound, we 
say that the sequence converges to the limit L and write 

lim nn
L a

→+∞
=  

 Convergent sequence 
 The sequence { }na converges to the number L, and we write  if for 

every , there is an integer N such that 

lim nn
L

→∞
= a

0ε > na L ε− < whenever . Otherwise, the 
sequence diverges.  

n N>

  
 Limit Theorem for Sequences 
 If and , then lim nn

a
→∞

= L lim nn
b M

→∞
=

1. Linearity Rule:  ( )lim n nn
ra sb rL sM

→∞
+ = +

2. Product Rule:  ( )lim n nn
a b LM

→∞
=

3. Quotient Rule: lim n

n
n

a L
b M→∞

= provided  0M ≠

4. Root Rule: lim mm
nn

a
→∞

= L provided m
na is defined for all n and m L exists.  

Example:  
Find the limit of the convergent sequences 

a/.
2

3

2 5 7n n
n

⎧ ⎫+ −
⎨ ⎬
⎩ ⎭

 b/.
4

4 2

3 1
5 2 1

n n
n n

⎧ ⎫+ −
⎨ ⎬+ +⎩ ⎭

 c/.{ }2 3n n n+ −  

 
Limit of a sequence from the limit of a continuous function 
The sequence{ }na , let f be a continuous function such that for If ( )na f n= 1,2,3,n = …

( )lim
x

f x
→∞

exists and ( )lim
x

f x = L
→∞

, the sequence { }na converge and .  lim nn
a L

→∞
=

Example: Given that the 
2

1 n

n
e

⎧ ⎫
⎨ −⎩ ⎭

⎬ converges, evaluate 
2

lim
1 nn

n
e→∞ −

 

 
 

 1
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Bounded, Monotonic Sequences 
Name Condition 
Strictly increasing 1 2 1k ka a a a−< < < < <… …  
Increasing  1 2 1k ka a a a−≤ ≤ ≤ ≤ ≤… …

1 2 1k ka a a a−> > > > >… …

1 2 1k ka a a a−≥ ≥ ≥ ≥ ≥… …

na M≤ 1,2,3,...n =

nm a≤ 1,2,3,...n =

 
Strictly decreasing  
Decreasing   
Bounded above by M for  
Bounded below by m  for  
Bounded If it is bounded both above and below 
 

2. INFINITE SERIES; GEOMETRIC SERIES 
 An infinite series is an expression of the form 

1 2 3
1

∞

=
+ + + =∑" k

k
a a a a  

and the nth partial sum of the series is  

1 2
1

n

n n
k

S a a a a
=

= + + + = k∑"  

The series is said to converge with sum if the sequence of partial sums S { }ns converges to S.  
In this case, we write  

1
limk nnk

a S
∞

→∞=
= =∑ S  

If the sequence { }nS does not converge, the series 
1

k
k

a
∞

=
∑ diverges and has no sum.  

 Example: Show that the series 2
1

1
k k k

∞

= +∑ converges and find its sum. 

 Solution:  

  We have 2

1 1 1
1k k k k

= −
+ +

. Then  

  

1 1 1 1 1 1 11
2 2 3 3 4 1
11

1

nS
n n

n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= − + − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

= −
+

" ⎞
⎟
⎠  

  1lim lim 1 1
1nn n

S
n→∞ →∞

⎛ ⎞= −⎜ ⎟+⎝ ⎠
=

)

 

 Example: Prove that the series convergent and find its sum 

  a. ( )(1

1
2 1 2 1n n n

∞

= − +∑  b.
1

2
3

n

n

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  c. 
1

1
2k

k

∞

=
∑  

 
 Geometric Series 
 A geometric series is an infinite series in which the ratio of successive term in the 
series is constant. If this constant ratio is , then the series has the form  r

2 3

0
, 0k n

k
ar a ar ar ar ar a

∞

=
= + + + + + + ≠∑ " "  
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 Geometric Theorem 

 The geometric series with diverges if 
0

k

k
ar

∞

=
∑ 0a ≠ 1r ≥ and converges if 1r <  with 

sum
0 1

k

k

aar
r

∞

=
=

−∑  

 Proof: 
  The nth partial sum of the geometric series is . 
Then,  

2 1n
nS a ar ar ar −= + + + +"

2 3 n
nrS ra ar ar ar= + + + +"

  ( )1
, 1

1

n
n n

n

n

rS S ar a

a r
S r

r

⇒ − = −

−
⇒ = ≠

−

 

 If 1 nnr r →∞> ⇒ ⎯⎯⎯→∞ lim nn
S

→∞
⇒ = ∞  

 If 1 0 lim
1

nn
nn

ar r S
r

→∞

→∞
< ⇒ ⎯⎯⎯→ ⇒ =

−
 

THE INTEGRAL TEST, p-series 
 Divergent Test 
 If then the series must diverge. lim 0,kk

a
→∞

≠ ka∑
 Proof: 
  Suppose the sequence of partial sums { }nS converges with sum L, so 
that .  Then we also have .  lim nn

S
→∞

= L

k

1lim nn
S L−→∞

=

  We have , and then it follows that 1k kS S a−− =

( )1lim lim 0k k kk k
a S S L L−→∞ →∞

= − = − =  

 We see that if ka∑ converges, then . Thus, if , t

 ample:  

lim 0kk
a

→∞
= lim 0kk

a
→∞

≠ hen diverges. 

Ex
ka∑

1

1 2 3
1 2 3 4 1k

k k
k k

∞

=
= + + + + +

+ +∑  " "Diverges since 

( )lim 1 0
1k

k
k→∞

= ≠
+

 

 The Integral Test 
where f is a positive continuous and decreasing function 

f x for
 If ( )ka f k= for k = 1,2,3,...
o  1x ≥  then 

And ( )
1

f x dx
∞

∫  
1

k
k

a
∞

=
∑

either both converge or both diverge.  

 Example: Test the series 
1

1∞

∑
k k=

for convergence  

 have

 Solution: 

 ( ) 1f x
x

=  We is a positive, continuous and decreasing for 1x ≥ .  

  [ ]
1 1

1 1∞

lim lim ln
b

b b
dx dx b

x x→∞ →∞
= = = ∞∫ ∫ , implying that 

1

1
x

∞

∫ dx diverges.  

 3
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1

1
k k

∞

=
∑Hence diverges.  

Example: Investigate the following series for convergent 

 1. k
5

1
k

k e=

∞

∑  2. 2
1k k=

1∞

∑  3. 24 ke e e
1 2 k+ + + +" "  

 

m  
p-series  
A series of the for

1

1 1 1 1
1 2 3p p p p

k k

∞

=

= + + +∑ "  

where p is a positive constant, is called  a p-series. 
Note: The harmonic series is the case where 1p = .  

The p-series

 
Theorem, the p-series test 

  1∞

1
p

k k=
∑ converges if 1p > and diverges if 1p ≤ .  

Proof: 

 Let ( ) 1
pf x

x
=  ( )

1

2

p

p

pxf x
x

−

′ = −  then  if

e

( ) 0f x′ <  0p >  

Henc  ( ) 1
pf x

x
= is continuous, positi asing ve and decre 1x ≥ a >nd .  

 For 

 0p

1p = , the series is harmonic, that is it diverges 
 For  and 0p > 1  we have: p ≠

1 1
1b px b

1 1

, 1
1l lim

1
,0 1

p b b

p
pim pd x dx

x p

∞ − ⎧
− ⎪−

→∞∫ ∫
p

→∞

>
−= = = ⎨− ⎪∞ < <⎩

 

 That is, this improper integral converges if 1p > and diverges if 
 For , the series becomes 

0 1p< <  
0p =

0
1k k=

1 1 1 1∞

= + + +∑ 1 1 1
"  

 For , we have 0p < 1lim pk k→∞
= ∞ , so the series diverges by the convergence test. 

 Hence, a p-series converges only when 1p > .  
e t ollowing seExample: T s  each of the f ries for convergence 

a. 
3

1k k=

1∞

∑   b. 
1

k
k e k= ⎝ ⎠

1 1∞ ⎛ ⎞−⎜ ⎟∑  

 Solution:  
  a. 3 3 2 . So 3 2 1p = >k k=  and the series converges.  

  b. We have 
1

k
k e=

1∞

∑ converges, because it is a geometric series with 1 1r
e

= < . 

And 
1

1
k k∑  diverges becau s a p-series with 
∞

=
se it i 1 1

2
p = <  

 Hence 
1

1 1
ke k

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑ diverges. 
k

∞

=

 4



Norton University  Infinite Series 

4. COMPARISON TE

Suppose 0 or all for some N . If 

ST 

a c≤ ≤ f

 
  Direct Comparison Test 

k N≥
1

k
k

c
∞

=
∑ k k converges, then also 

converges. 

 Let for all for some N. If

1
k

k
a

∞

=
∑

0 k kd a≤ ≤ k N≥  
1

k
k

d
=

∞

∑ diverges, then 
1

k
k

a
=

∞

∑ also diverges.  

ple: Test esExam the seri  
1

1
3 1k +

 for convergence.  
k

∞

=
∑

Solution:  

 We have for . Then
1

1
3k

k

∞

=
∑3 1 3 0k k+ > > 1k ≥ 1 10

3 1 3k k< <
+

. Since converges, 

it implies that 
1

1
3 1k +∑ c

k

∞

=

Example: Test for convergence the following series 

 a. 

onverges.  

1
2 1k k= −

∞

∑   b. 1∞

1 !k k=
∑  

 Limit Comparison Test 

Suppose 0 for all sufficiently large k and that ka > and 0kb > lim k

k
k

a L
b→∞

= where L is 

finite and positive ∞ en ka(0 L ) . Th< < ∑ and kb∑ either both converge or both diverge.  

Example:  Test the series
1 2k

∞

=
∑  for convergence.  1

5k −

 We see that

Solution:  
1
2k∑  is a convergent series for it is the geometric series with 

1 1
2

r = < . Mo

 

reover 

1
22lim

k 5 11 2 5
2

k

kk

k

→∞

− = =
−

 

Hence 1
2 5k −∑ is convergent too.  

The zero-infinity limit comparison test 
Suppose r all sufficient large k.  

  

 0ka > and 0kb > fo
 

If lim ka d ∑ nverges, then ka∑ conver0
k

kb→∞
=  an cokb ges 

  If lim k

k
k

a
b→∞

= ∞ and diverges, then kb∑ ka∑ d

AND THE ROOT TES

 Theorem: Given the series w , suppose that 

iverges.  

5. THE RATIO TEST T 

ka∑ ith 0ka > 1lim k

k
k

a L
a

+

→∞
=  

 5
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 The ratio test states the follo : 
  If 1L < , then a∑ con rges 

wing
ve

s 
e 

Te t

k

  If 1L > , then ka∑ diverge
  If 1L = , then the test is inconclusiv
 

 Example: s  the series 
1

2k∞

∑  for converge
!k k=

nce. 

  Let 

 Solution:  
2k

!ka
k

= and note that  

  ( )
( )

1

1
1 !2 2lim lim lim lim 0 1

2 1 !2 1
!

k

k
k

k kk k k k
k

a k
a k k

k

+

+
+

→∞ →∞ →∞ →∞
= = = = <

+ +
 and the series is 

  
ple: Find all number for which the series  

converges. 
 Solution:  

2
1 !k +

convergent.  

 Exam 0x >
3 3 2 3 32 3kk x x x x

∞

= + + +∑ "  
1k =

( )3 31

3

1 1lim lim
k

kk k

k x k  L = x x
k x k

+

→∞ →∞

+ +⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

erges if  Thus, the series conv 1L x= < and diverges if 1x > . When 1x = , the series 

becomes , which diverges by divergence test.  

at

3
∞

1k =

 Root Test:  
 Given the series a∑ with 0a ≥ , suppose th

k∑

k k  lim k
kk

a L
→∞

= . The root test states the 

llowi
en

1or L is infinite, then 

fo ng: 
  If 1L < , th ka converges 

  

 ∑
If L > ka∑ diverges.  

1 sive. 

Te t

  If , the root test is concluL =
 

 Example: s  the series 
( )2

1
k

∞

∑ for con
lnk k=

vergence. 

  L

 Solution:   

et 
( )

1
ln

k ka
k

= and note that  

( )  1li m 0 1
lnkk k k k→∞ →∞ →∞

= < . Then, the series converges.  

e: Test the series 

lim m ln likkkL a k −= = =
2

1

11
k

k k

∞

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ Exampl for convergence.  

 6
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 Example: Test the series )(0

!
1 4 7 3 1k +

for converg
k

k∞

= ⋅ ⋅∑ "
ence.  

6. ALTERNATING SERIES; ABSOLUTE AND CONDITIONAL CONVERGENCE  
ries for which the s ternate in sign, and 

each of these is appropriately called alternating series: 

in both cases.  
 

Alter est 

An alternating series or  where , for all k, converges if 

 There are two classes of se uccessive terms al

( ) 1 2 3
1

1 k
k

k

a a a a
=

∞

− = − + − +∑ "
∞

( ) 1
1 2 3 4

1
1 k

k
a a a a+

=

− = − + − +∑ "
 

where 0ka >

 nating Series T

 ( )1 k
ka

∞

−∑ 
1k =

both of the following two conditions are satisfied: 

( ) 1

1
1 k

k
k

a
∞

+

=

−∑ 0ka >

 1/. lim 0ka =  

 2/.
k→∞

{ }ka is decreasing sequence; that is, 1ka + ka for all k.  

ries is c  or divergent. 

≤

Example: Determine if the following se onvergent ( ) 1

1

1 k

k k

+∞

=

−
∑  

Solution:  

 We have 1lim lim 0b = = and 1
1 1b b= > = . Hence the series is kk k k→∞ →∞ 1k kk k ++

conver

Example: Investigate the series

gent.  
( ) 2

2
1

1 k−
5k

k
k

∞

= +∑  

wing series s convergent or divergent. ( )
2

cos

n

n
n

π∞

=
∑  Example: Determine if the follo  i

 
 
 The series is absolutely convergent if the related series

Absolutely And Conditionally Convergent Series 
ka∑  ka∑ converges. The 

eriess ka is conditionally convergent if it converges but  ∑ ka∑ diverges.  

The 
  
 Generalized Ratio Test 

ries ka∑ For the se , suppose 0 for 1k ≥ and that ka ≠

1lim k

k
ka

 a L+

→∞
=

where L is a real number or , then  
 If , then the serie converges absolutely and hence converges. 

s

∞
1L < s ka∑

 ka∑ If 1L >  or L infinite, the serie diverges.  
clusi

ies are absolute convergent, 

 If 1L = , the test is incon ve.  
 

Example: Determine if each of the following ser
conditionally convergent or divergent.  

 7
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a. ( )
1

1 n

n

∞ −
∑  b. ( )
n=

2

2

1 n

n

+∞ −
∑  c. 3

1

sin n∞

1n= n n=
∑  

 
7. POWER SERIES 

An infinite series of the form  

in 

 

  ( ) ( )0 1k
k

a x c a a
=

− = +∑ ( )2
2

0

k x c a x c− + − +"  
∞

( )x c−is called a power series . The number are the coefficients of 

which may be considered as an extension of a polynomial in x  
 Convergence of a power series 

: 

 2. The series converges only for 
ly for all x in an open interval

0 1 2, , ,a a a …

2
2

0k

x a x
∞

=

+ +∑ "0 1
k

ka x a a= +  

. 

 For a power series 
0

k
k

k
a x

=
∑ , exact

∞

ly one of the following is true

 1. The series oversees for all x.  
0x =  

( ),R R− 3. The series converges absolute and diverges 

rfo  x R . It may either converge of diverge at the endpoints of the int> erval, x R= − and 
x R= .  

We  call the interval ( ),R R− the interval of convergence of the power  R  is
 th

series.  
alled e radius of conv of the series. If  the se
eries h

c ries converges only for 0 , the 
s as radius of converge 0  and if it converges for all 

ergence 
nce R =

x =
x , we say that R = ∞ .  

 Example: Show that the power series 
1 !

k

k

x
k

∞

=
∑ converges for all x.  

 Solution:  

( )
( )

1

11 ! !lim lim lim 0
1 ! 1

!

k

k

k kk k k

x
k xx kL

x k x k
k

+

++

→∞ →∞ →∞

+
= = =

+ +
   =

 Hence the series converges for all x.   
 

1

k

k

x
k

∞

=
∑Example: Determine the convergence set for the power series  

  

 Solution:  
  By the generalized ratio test, we find 

1

1 kk +lim lim
1

k

kk k

x

L x x
x k
k

+

→∞ →∞
= = =

+
 

 The power series converges absolutely if 1x < and diverges if 1x > .  

 For 1x = − : 
( )

1

1∞ −
∑ converges by the alternation series test 

k

k k=

 8
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 For 1x = : ( )
1

1 k

k k

∞

=
∑  diverges  

 Thus, the given-above power series converges for 1 1x− ≤ < and diverges otherwise.  

 Example:  Find the interval of convergence for the power series
1

2k k

k

x
k

∞

=
∑ . What is the 

radius of convergence? 

 Example: Find the interval of convergence of the power series ( )
0

1
3

k

k
k

x∞

=

+
∑  

  
 Term-By-Term Differentiation and Integration Of Power Series 

 A power series with radius of convergence 
0

k
k

k
a x

∞

=
∑ R can be differentiated or 

integrated term by term on its interval of absolute convergence R x R− < < . More specifically, 

if for 
0

k
k

k
a x

∞

=
∑ x R< , then for x R< we have  

( ) 1 2
1 2 3

1
2 3k

k
k

f x ka x a a x a x
∞

−

=

′ = = + +∑ "+  

and  

( ) ( ) 1

0 0 0 1
k k k

k k
k k k

a kf x dx a x dx a x dx x C
k

∞ ∞ ∞
+

= = =

⎛ ⎞= = =⎜ ⎟ +⎝ ⎠
∑ ∑ ∑∫ ∫ ∫ +  

  

 Example: Let f be a function defined by the power series ( )
0 !

k

k

xf x
k

∞

=

=∑ for all x 

Show that ( ) ( )f x f x′ = for all x, and deduce that ( ) xf x e=  
 Solution:  

  

( )

( )

2 3 4

2 3

2 3

1
2! 3! 4!

2 3 40 1
2! 3! 4!

1
2! 3!

d x x xf x x
dx

x x x

x xx

f x

⎡ ⎤′ = + + + + +⎢ ⎥
⎣ ⎦

= + + + + +

= + + + +

=

"

"

"

 

   
 If we have ( ) ( )f x f x′ = , then ( ) xf x Ce= and ( )0f C=  

 ( )
2 3

1
2! 3!
x xf x x= + + + +" , then ( )

2 30 00 1 0
2! 3!

f = + + + + =" 1 

So we obtain . Therefore1C = ( ) xf x e= .  
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8. TAYLOR AND MACLAURIN SERIES 
 
 Definition: 
 If f has derivatives of all orders at , then we define the Taylor series f about a x a=  
to be     
 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )2

0 ! 2!

k k
k kf a f a f a

x a f a f a x a x a x a
k k

∞ ′′
′− = + − + − + + − +∑ " "

!
 

 Definition: 
 If f has derivatives of all orders at , then we define the Taylor series f about a x a=  
to be     
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

0

0 0
0 0

! 2!

k k
k kf f

x f f x x x
k k

∞ ′′
′= + + + + +∑ " "

0
!

f
 

 
 Example: Find the Maclaurin series for xe , cos x , and sin x  
 Example: Find the Taylor series about 1x = for 1 x  
 
9. TAYLOR’FOMULA WITH REMAINDER; CONVERGENCE OF 
TAYLOR SERIES 
 
 Taylor’s Theorem 
 Suppose that a function f can be differentiated times at each point in an interval 
containing the point a, and let 

1n +

  ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )2

2! !

n
k

n

f a f a
p x f a f a x a x a x a

n
′′

′= + − + − + + −"  

be the nth Taylor polynomial about x a= for f . Then for each x in the interval, there is at 
least one point c between a and x such that  

  ( ) ( ) ( )
( ) ( )

( ) ( )
1

1

1 !

n
n

n n

f c
R x f x p x x a

n

+
+= − = −

+
 

 

 We can rewrite ( ) ( )
( ) ( )

( ) ( )
1

1

1 !

n
n

n

f c
f x p x x a

n

+
+= + −

+
 

then we can write ( )f x as 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

1
2 1

2! ! 1 !

n n
k nf a f a f c

f x f a f a x a x a x a x a
n n

+
+′′

′= + − + − + + − + −
+

"  

and we call it Taylor’s formula with remainder.  
 
 Convergence of Taylor Series 
 The Taylor series for f converges to ( )f x at precisely those points where the 
remainder approaches zero; that is,  

  ( )
( ) ( ) ( ) ( )

0
lim 0

!

k
k

nnk

f a
f x x a R x

k

∞

→+∞=

= − ⇔∑ =  
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 11

 Constructing Maclaurin Series by Substitution 
 Sometimes Maclaurin series can be obtained by substituting in other Macluarin series 
 
 

 Example: Using the Maclaurin series
2 3

1
2! 3!

x x xe x x= + + + + −∞ < < +∞"   

we can derive the Maclaurin series for xe−  by substituting x− for x to obtain 

 ( ) ( ) ( )2 3

1
2! 3!

x x x
e x x− − −

= + − + + + −∞ < − < +∞"  

 or 
2 3

1
2! 3!

x x xe x x− = − + − + −∞ < < +∞"  

  
 Example: Obtain the Maclaurin series for ( )21 1 2x− by using the Maclaurin series  

  2 31 1 1
1

1x x x x
x

= + + + + − < <
−

"  
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