Lecture Note Functions, Limit and continuity of function

Functions, Limit,
And Continuity

1. Definition of a function
A function is a rule of correspondence that associates with each object x in one set called

the domain, a single value f (x) from a second set. The set of all values so obtained is
called the range of the function.

Domain Range

For a real function f we can define as follow
f:R>R

x> y=f(x)
x can be called the independent variable and y the dependent variable. The domain of
the function f, commonly denoted by D; is defined by

D, ={vxeR,3yeRsuch thaty = f (x)}
Example:

1. f(x):% is defined forx = 0. Hence, D, = R—{0}

2. f(x)=+/x*—1is defined for x>1and x <-1. Hence, D, =(—o0,~1]U[1,+x)
3. f(x)=+v1-x"is defined for -1<x<1

2. Composition of Functions
f g
> f(x) > 9(f(x)
gof

If f works on x to produce f (x) and gworkson f (x)to produce g ( f (x)) we say that

we have composed g with f. The resulting function, called the composition of g with f, is
denoted by g f . Thus, (g f)(x)=g(f(x))

Example: Given the function f (x):(x—3)/2,g(x):\/§. Find gofand fog
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Solution
3

(9o 1)(x)=0(1 (x) =5

X
(fo9)(x)= 1 (s0x)) =%

Example: Write the function p(x)=(x +5)5 as a composite function go f

Solution:

The most obvious way to decompose p is to write p(x) =g ( f (x)) , Where g (x) = x°, and

f(x)=x+2

w

3. Inverse Functions

Inverse Function

Let f be a function with domain D and range R. Then the function f with
domain R and range D is the inverse of f if

f7(f(x))=xforallxinD
and

f(f(y))=y forallyinR.

Example: Let f (x)=2x-3. Find f"if it exists.

Solution:

Tofind f7*, let y=f (x) , then interchange the x and y variables, and

finally solve fory.

y =2x-3, then x=2y-3, implying y:%(x+3), hence f‘lzé(x+3)

Criteria For Existence of An Inverse

A function f will have an inverse f on the interval | when there is exactly one
number in the domain associated with each number in the range. That is, f "exists if
f(x )and f(x,)are equal only when x, = x, . A function with this property is said to be

one-to-one function.
Horizontal Line Test
A function f has an inverse iff no horizontal line intersects the graph of

y = f (x)at more than one point.

A function is called to be strictly monotonic on the interval I if it is strictly increasing or
strictly decreasing on that interval.

Strictly increasing on I: For x,,x, € I such that x, <x, = f (x )< f(X,)
Strictly decreasing on I: For x,, X, e I such that x, <x, = f (x,)> f(X,)
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Theorem

Let f be a function that is strictly monotonic on an interval I. Then f ™ exists and
IS monotonic on I.

Graph of

If f ‘exists, its graph may be obtained by reflecting the graph of f in the
liney=x.
4. Inverse Trigonometric Functions

Inverse Sine Function

y=sin"x < x=siny and —%s yS%

The function sin™ x is sometimes written asarcsin X .
Inverse Tangent Function

_ T T
y=tan"x < x=tanxand - =< x<=
2 2

The function tan™ x is sometimes written as arctan x

Definition of Inverse Trigonometric Function

Inverse Function Domain Range
. T T
=sin™" x -1<x<1 - <y<=
g 2 y 2
y =cos ™" X -1<x<1 O<y<~z
y=tan™ x —00 < X < 400 _£<y<£
2 2
y=csctx Xx=lorx<-1 _%gyg%,y;to
y =sec™ x x>1lorx<-1 ogygﬂ,y;t%
y =cot™ x —00 < X < 400 O<y<nr

Example: Evaluate the given function

a. sin? —ﬁ b. cos™0 C. tan‘l(ij
2 N
Solution:
a. sin? £ -z b. cost0=" C. tan‘l(ij=Z
2 4 2 J3) 6
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Inverse Trigonometric Identities
Inversion Formulas

sin(sin‘1 x): X for —1<x<1
in(siny) = for - Z<y<Z
sin(siny)=y or 5 y >
tan (tan‘1 x) =X for all x
tan”'(tany)=y for —%< y<%

Example: Evaluate the given functions a. sin(sin*0.5)  b. sin™*(sin0.5)

Solution:
a. sin (sin‘1 0.5) —0.5because—-1<0.5<1

b. sin*(sin0.5)=0.5, because —% <0.5 g%

Example: For —1<x <1, show that a. sin™(—x)=-sin""x b.cos(sin’1 x): 1-x?

Some other ldentities

sintx+costx=
tantx+cot™? x =

sectx+csctx=

NN Y NN

5. Hyperbolic Functions and Their Inverses

5.1 Definition

The hyperbolic sine and hyperbolic cosine function, denoted respectively by sinh and
cosh, are defined by

X —X X

e’ —e e +e
and cosh x =

X

sinhx =

The other hyperbolic function, hyperbolic tangent, hyperbolic cotangent, hyperbolic
secant and hyperbolic cosecant are defined in terms of sinh and cosh as follows

sinhx e*—e™” coshx e*+e™”
tanh x = =— coth x = — =—
coshx e*+e sinhx e*—e
1 2
sechx = cschx = =

X X

coshx e*+e™ sinhx e —e
5.2 Hyperbolic Identities

1/.cosh® x —sinh? x =1

2/.1—tanh? x = sech®x

3/.coth? x —1=csch®x
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4al.sinh (x+ y)=sinh xcosh y +cosh xsinh y
4b/.cosh(x+y) = cosh xcosh y +sinh xsinh y

5a/.cosh x +sinh x = e*

5b/.cosh x —sinh x =e™*
6a/.sinh 2x = 2sinh x cosh x

6b/. cosh 2x = cosh? x +sinh? x
7al.cosh 2x = 2sinh? x +1
7b/.cosh 2x = 2cosh? x—1

8a/. cosh (—x) = cosh x

8b/.sinh (—x) = —sinh x
9a/.sinh(x —y) =sinh xcosh y —cosh xsinh y
9b/.cosh(x—y)=cosh xcosh y —sinh xsinh y

5.3 Inverse Hyperbolic Functions
The Hyperbolic inverses that are important and to be studied here are the inverse
hyperbolic sine, the inverse hyperbolic cosine, and inverse hyperbolic tangent. These

functions are y =sinh™ x (or y = Arcsinh x), y=cosh™ x (ory = Arccosh x ) and
y =tanh™ x (or y = Arctanh x) are the inverses of y =sinh x, y =cosh x and y = tanh x

respectively.
Theorem

i/. sinh™x=1In (x+\/ X2 +1) ( for any real number)
iil. cosh‘lx:ln(x+\/x2—l) (x>1)

iii/.tanh‘lx=%lnG+—XJ (-1<x<1)
—X

6 Limits
Definition:
To say that lim f (x) = L means that for each given & > 0 (no matter how small) there is a

X—C

corresponding & > 0 such that ‘f (x)— L‘ < & provided that 0 < |x—c| <0 ; thatis
O<|x—c|<5:>‘f(x)—L‘<g.

2 — —_—
Example: 1/.Prove that lim(3x—7)=5 2/.Iimwz5

x—>4 x—>2 X—2

Right-hand Limit and Left-Hand Limit
By lim f (x)= Awe mean that f is defined in some open interval (c,a)and

X—a

f (x) aproaches A as x approaches a through values less than a, that is, as x approaches a
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from the left. Similarly, lim f (x) = A means that f is defined in some open interval

(a,d)and f(x)approaches A as x approaches a from the right.

If f is defined in an interval to the left of a and in an interval to the right of a, then
lim f (x) = Aiff lim f(x)=Aand lim f(x)=A

Limit Theorems
Let n be a positive integer, k be a constant, and f and g be functions that have limits at c.
Then

1/.limk =k

2/, limx=a

3l. I:izrz[kf (x)]=klim f (x)

41 Nim[ £ (x)£g(x)]=lim| f (x)]£lim[g(x)]
5/.1im[  (x)g (x)]=[lim f (x) || limg (%)
ot 100 _ T g(x)#0

e g(x)  limg(x) o

71.1im g/ f (x) = gflim f (x) if defined.

7. Continuity of Functions
Continuity at a Point
Let f be defined on an open interval containing c. We say that f is continuous at ¢

iflim f (x)=f (c).
sin 3x

Example: f (x)= X0

3 x=0
At the point x=0, f is defined and f (0)=3

lim £ (x) = lim = 303X _

x—0 x—0 X

We see thatlirrg f (x)=f(0). Thus f is continuous at the point x =0

3

Example: Show that f is discontinuous at the point x =1

—2X+4,x>1
f(x)=<x+1, x<1
-1, x=1

At the point x =1the function is defined, that is f (1)=-1
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lim f (x):lLrp(—Zx+4):2
i £ (x)= i (xr) =2

We see thatlLrP f (x):lLrP f (x)=2. Then legll f(x)=2=f(1)

Hence f is discontinuous at the point x =1

Definition Continuity on an Interval
The function f is right continuous at a if lim f (x)= f (a)and left continuous at b

if lim f (x)= f (b). -

x—b~

We say f is continuous on an open interval if it is continuous at each point of that
interval. It is continuous on the closed interval [a,b] if it is continuous on(a,b), right

continuous at a, and left continuous at b.

Example: Show that f (x)= J9—x? is continuous on the closed interval [-3.3]
Solution: We see that the domain of f is the interval[-3,3]. For c in the interval
(—3,3) we have

lim £ (x) =limy9-x* =v9—c? = f (c)
So f is continuous on(-3,3). Also

lim f (x)=1limv9-x*=0= f(3)

X—3~ X—3~

and

lim f(x)= lim v9-x* =0= f (-3)

x—-3* x—-3"

So f is continuous on [-3,3].

Exercises

1 Given ¢(x)= 3);+5

, determine (p(lj.
X

2f ()
——
1-[ ()]
3Given f(x)=Inxand ¢(x)=x’, determine (f c)(2), (f op)(a)and (¢o f)(a).
4 Find the domain of the following functions

a. y=+3-x b. f(x)=v3+x+¥7-x  c.y=+Inx+1

21f f(a)=tan(a), verify that f (2a)=

d.y=In(Inx) e. y=arcsin(3x—5)
f-y=ln(x2—3x+2)+\/r4x+5 g.y= sin x
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15 f(3+x)

5 f(x) b.m=f(4)
6 If f(x)zx—_i,showthat f(%}z—f(x)and f(—%):— 1

X+ f(x)

5I1f f(x)=2",showthat a. f (x+3)—f(x-1)==

71f f(x)zi,then show that f(a)- f(b)= f(babaj

8 Compute fa+ hg_ @) the following cases:

a. f(x):iwhen az2anda+h=2
X—2

b. f(x)=vx-4whena>4anda+h>4

C. f(x):ilwhen az-landa+h=-1
X+

9 Prove that

a. sinhtx= In(x+\/x2 +1),VXER

1+Xj (-1<x<1)

b.tanh™ x_—In(
2 1-x

10 Prove that
a.sin(cos’lx)z 1-x° b. cos(sm x):

c. sec( )—\/1+ G d.sin{ 1(%)} =
etan(sm x) fsm(tan x)

\/1 x? V1+x?
g.cos(2sin™ x) =1-2x’ h.tan(Ztanlx)zlf))((2

X+y

11 Prove that tan""x+tan"y = tan‘l(
1-xy

] if —% <tan'x+tan'y <%and use the
fact to prove that
a.tan™’ (lj +tan™! (EJ i b.2tan™" (lj +tan™! (1] i
2 3) 4 3 7 4
12 Compute cos sin‘11+ 2005‘11 ,sin sin‘llwtcos‘11
5 5 5 4

13 Prove that f (x)=x*—3x+ 2is continuous at x =4

14 Prove that f (x)=1/xis continuous at a.x =2
15 Investigate the continuity of each of the following functions at the indicated points:
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sin x

a f(x)=] x 70
0, x=0

b. f(x)=x-|x]
x* -8

¢ t(x)=1x_a ¥*?
3 X=2

Functions, Limit and continuity of function

at the point x=0

at the point x=0

at the point x =2

16 Find a value for the constant k, if possible, that will make the function continuous

X—-2, x<1
a f(x)= kx?, x>1

17  Find the points of discontinuity, if any, of the function f (x)such that

b.f(x):{kﬁ’ X<2
2X+k,x>2
ans: a.5 b. 4/3
X+1, x>2
f(x)=42x-11<x<2
x-1, x<1

ans: discontinuous at x =1

18 If the function
x* —16
f(x)=1 x—4
c, x=4

X#4

is continuous, what is the value of c?

ans: 8

19 For what value of k is the following a continuous function?

JIX+2 —+/6x+4

f(x)= X—2
k
1
ans: =
8
20 Let
3x*-1,x<0
f(x)=<cx+d, 0<x<1
VX+8,x>1

,ifxz—%andx;tz

Determine ¢ and d so that f is continuous (everywhere).

ans: d=-1,c=4
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21 Determine if the following function is continuous at x=1.

3Xx-5x=#1
f(x):{Z x=1

22 Determine if the following function is continuous at x=-2.

X2 +2x,Xx <=2
f(x)=1,
X*—6X, X > -2

23 Determine if the following function is continuous at x=0

;6’ Xx<0
-3
, Xx=0

VA+x%,x>0

>

N

f(x)=

2

24. Determine if the functionh(x) = X3 1

X°+1

is continuous at x = -1.

2
25. For what values of x is the function f (x) :%continuous?
X* +3x—

10
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Differentiation

1 Definition
A function f is said to be differentiable at Xif and only if
f h)—f
f(xeh) -1 (x)
h—0 h

exists.

If this limit exists, it is called the derivative of f at xand is denoted by f'(x). Hence,
f (x+h)—f(x)

f'(x):lhigg h
Example f(x)=x*f'(x)=?
Solution
— 2 2 2 22
f(x+h) f(x):(x+h) X" _ X’ +2hx+h*—x Coih
h h h
Then
f1(x) = lim = IO) ooy
h—0 h—0

Example Find f'(-2)if f(x)=1-x’
Solution
We can first find f '(X) in general

()= tim M=) [1-(x+h) } [1-¢]

im
h—0 h h—0
_ _h2
tim =20 i (c2x )= -
h—0 h h—0

and then substitute —2 for X
f'(—2)=—2-(—2)=4
We can also evaluate f’(—2)more directly
_ _f(_ 1-(=2+hY |=[1-(=2)’ e
(2) = pim L C240) f(z):hm[ (-2+h)’]-[1-( )Lhm4h h_,
h—0 h h—0 h h—0 h

3x*+1, x<0

Example Find f'(0) iff(x)={3 Lo {
X +1, < X<

Example Find the derivative of f (x)= %

X—

The process of finding a derivative is called differentiation. In the case where the independent

variable is X it is denoted by the symbol
d

™ f(x)]

read the derivative of f (X)with respect to x
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d

L (x)]=1'(x)

If the dependent variable y = f (x), then we write % = f'(x)
X

2 Rules for Differentiating Functions

Assume that u, v, and w are differentiable functions of X and that ¢ and m are constants
d

1 d—(c) =0 (The derivative of a constant is zero)
X
2 i(cu) = Cd_u
dx dx
d
3 —(x")=mx"" (P Rul
o ( ) (Power Rule)
4 i(u +vEw) = du + av + aw (sum/difference rule)
dx dx dx dx
5 L) =v 8 02 Product Rule)
dx dx  dx
du dv
du)y Vax Yax
6 —(—j = M (Quotient Rule)
dx\ v v
du
d(1) gx :
7 —| — |=—3~,u # 0(Reciprocal Rule)
dx\ u u

3 The Chain Rule

If we know the derivatives of f and g, how can we use this information to find the derivative
of the composition f o g ?

The key to solving this problem is to introduce dependent variables
y=(12g)(x)=f(g(x)) and u=g(x)
So thaty = f (u). We use the unknown derivatives

dy du
——=1f"(u d—=0g'(x
= | (u) and —=g'(x)

to find the unknown derivative
dy _d

dx &[ f (g(x)):'

Theorem (The Chain Rule)
If g is differentiable at the point x and f is differentiable at the point g (X) then the
composition f o g is differentiable at the point X. Moreover, if
y=f(g(x)) and u=g(x)
then y=f (u) and

dy _dy du
dx du dx
dy

Example Find —2if y = 4cos(X’)

dx
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Solution
Let u =X’ sothat y =4cosu, then by chain rule

dy _dy du_d

d _ .
dx du dx duHCOSU]'&[X}}:(_4SIHU)'(3X2)=—12X2s1nx3

In general, if f (g (X)) is a composite function in which the inside function g and the outside

function f are differentiable, then

911 (0 00)]=1'(s(x))-0'(x)

dx

3
Example Find the derivative of ( X+ i}
X —

Solution
By using the chain rule, we obtain

fi(x+2J3_3(x+2]{£i(x+2j
dx\ x-3 x=3) dx\ x=3
Let calculate i(izj

dx\ x-3

i(HZ)(xs)o‘i'x(xu)(x+z)o‘|3'x(x3)(X3),1(X+2)_1 S
dx\ x-3

(x=3) (x=3)° (x=3)

Hence
2

S (5] (2] 2 35)- () e,

4 Derivatives of Trigonometric and Hyperbolic Functions

1 i(sin X):cosx 5 i(sec X):secxtanx
dx dx
d ) d

2 —(cosx)=—sinx 6 —(cscx)=—cscxcotx
dx dx
d ) d )

3 —(tanx)=sec’ X 7 —(coshx)=sinhx
dx dx
d ) d, .

4 —(cotx)=—csc’X 8 —(sinhx)=coshx
dx dx

N.B: tanx = SmX cotx=cf)SX secX = andcsc X = ——

cos X sin X cos X sin X

Proof

1—cosh 0

Recall that lim% =land lim
h—0 h h—0

From the definition of a derivative,

1
sec: secant and csc: cosecant
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sin(x+h)—sinx . sinXcosh+cos xsinh—sin x
=1h1m .
—0

. { . (cosh—lj {sinhﬂ . { (sinhj . (l—coshﬂ
=lim| sin X +cosX| — | |=1lim| cos X| —— |—sin X
h—0 h h h—0 h h

Since lim(sin x) =sin xand lim(cos ) =cos X,
h—0 h—0

i[sin X] =1lim
dx h—0

1—cosh

%[sin X]= cosx-Ling(%J—sin x-lhirrg( J =cosX-(1)—sinx-(0)=cosx

Thus, we have shown that

d,.
—[sin x] = cos x
dx
The derivative of cos X is obtained similarly:
d . cos(x+h)—cosx = cosxcosh—sinxsinh—cosXx
—[cosx]=1im =lim
dx h—0 h h—0 h

. { (cosh—lj . (sinhﬂ
=lim| cos X- —sinX-| ——
h—0 h h

. (1-=cosh ) . (sinh
=—cos X-lim —sin X-lim
h—0 h h—0 h

=(—cosx)(0)—(sinx)(1)=—sinx
Thus, we have shown that

%[cos X]=—sin X
Example Find f'(x)if f (x)=x"tanx
Solution

, d d
f'(x)=x -&[tanx]+tanx-&[xz]

=x*sec’ X+ 2Xtan X

Example Find dy/dxif y = sin X
1+ cos X
Solution
| d,. ) d 1
ﬂ_( +cosx)-&[smx]—smx-&[ +cosX| _ (1+cosx)(cosX) —(sinX)(—sin x)
dx (1+cos X)2 (1+cosx)2
_cosX+cos’X+sin’X  cosx+1 1
(l—i-cosx)2 (l—i-cosx)2 1+cos X

5 Derivatives of Functions not Represented Explicitly
5-1 Implicit differentiation

Consider the equation xy = 1. One way to obtain dy/dX is to write the equation as y = 1
X

from which it follows that

ﬂ_i(l)__L
dx dx\ x NG
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Another way is to differentiate both sides

This second method of obtaining derivatives is called implicit differentiation.

Example By implicit differentiation find dy/dx if 5y* +siny = x>
Solution

Differentiation

Differentiating both sides with respect to X and treating and treating Yy as a differentiable

function of X, we obtain.
d . d,,
&(Sy +sin y) :&(X )
d

5&(y2)+%(sin y) = 2x

S(Zy%}r(cos y)% =2X

dy dy
10y— — =2X
de+cosde
dy__

dx 10y +cosy
Example Find %if X+ Xy +x=4
X
2

Y i axe — 2y =9

dx?

Example Find

5-2 Derivative of the Inverse Functions

) ) . _ dy 1
Let y = f (x)be a function whose inverse is x= f ' (y). Then o ™
dy
Example Find the derivative of y = arcsin X .
Solution
. . dx d, .
We have y = arcsin X < X =sin y and hence Yl d—(sm y)=cosy. Then
y ay
ﬂ=i(arcsinx)=—= ! = 1 - = 1
dx dx dx  cosy cos(aresinX) /- x2

dy
Example Find the derivative of y = arccos X and y =arctan X .

5-3 Derivatives of functions Represented Parametrically
If a function Y is related to a variable X by means of a parameter t
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y=y(t)
Then
dy
dy _dt
dx dx
dt
or, in other notation,
Yy = L
X]
X=a t
Example Find d—yif { C?S
dx y =asint
Solution
We find % = —asint,ﬂ =acost . Hence ﬂ =— ac9st =—cott.
dt dt dx asint

X=2t-1

Example Find d—yif{ o
y =

dx

6 Logarithmic Differentiation

Taking the derivatives of some complicated functions can be simplified by using logarithms.

This is called logarithmic differentiation.
XS

Example Differentiate the function y =
(1-10x)Vx* +2
Solution

Taking logarithms of both sides we obtain
5

Iny=In
(1-10x)v/x* +2

Iny=Inx’ —ln(l—lOX)—ln\/X2 +2
Differentiate both sides with respect to X to get
5x¢ 10 (\’ X+ 2)

+ J—
X 1-10x  x242
510 X

+ —_
x> 1-10x x> +2

!

< < <<

Soving for Y’
yoy 5, 10 X
X 1-10x x> +2

X’ 5x4 10 X
= + - P
(1_10X)\/X2 2 X 1-10x Xx*+2
We can also use logarithmic differentiation to differentiate functions in the form
v(x)
y=[u(x)]

Example Differentiate y = x*, y=Xx*, y =a*where a is a constant.
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7 Higher Order Derivatives
7-1 Definition of Higher Order derivatives

A derivative of the second order, or the second derivative, of a function y = f (X) is the

derivative of its derivative; that is

The second derivative may be denoted as

2

y", or (; z,or f"(x)

Generally, the nth derivative of a function y = f (X) is the derivative of the derivative of order

(n-1) . For the nth derivative we use the notation
n

dy or f(n)(x)

n 3

y(“) , or

Example Find the second derivative of the function y = ln(l — X)
Solution

!___1 ”_( -1 j'_ 1
ek Y T C(1=x)’

7-2 Higher-Order Derivatives of functions represented Parametrically

If
{X=¢0)
y=y(t)
then the derivative y' = %, y" = 3—3, can successively be calculated by the formulas

T yg)t and so forth

X
For the second derivative we have the formula
o XYk~ Xe Ve
yxx - "3
(%)
X =acost

Example Find y"if .. Answer: —
y =Dbsint a

Zsin’ t

8 Differential
8-1 First-Order Differential

The differential of a function y = f (X) is the principal

part of it increment, which is linear relative to the ¥ l N
increment AX = dX of the independent variable X. The
differential of a function is equal to the product of it Ay
derivative by the differential of the independent variable
dy = y'dx M r
whence
Y~%
dx ] F g ¥
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8-2 Properties of Differential

1 dc=0,C 1sa constant
d(cu)=cdu
d(utv)=duxdv
d(uv)=udv+vdu

d(gj:vdu—zudv v 0
v v
6 df (u)=f"(u)du
8-3 Approximation by Differential
For the function y=f(x), Ay~dy; that is f(x+Ax)—f(x)= f'(x)Ax whence
f(x+Ax)= f'(x)Ax+ f (x)
8-4 Higher-Order Differential
Ify=f (X) and X is the independent variable, then

d2y — y”(dX)z

d3y — ym(dx)3

dny = y(n) (dX)n
9 Theorems Relative to Derivative
9-1 Rolle’s Theorem

If f(X)is continuous on the interval [a,b], differentiable at every interior point of the

O B N\

interval and f (@)= f(b), then there exist at least a point X =¢, a< & <bwhere f'(£)=0.

Proof
If f is continuous on the interval [a,b] , then it attains on the interval a relative maximum

value M and a minimum value m. If m=M, then f is constant, say, f (X) =m, implying that
f'(af) =0. If m#M, we suppose that M >0 and f attains the maximum value M at x =&, that
is f(&)=M, &#ab. If f(&)is the upper bound of f, then f(&+h)—f(£)<0 and

therefore,

FE=1() £ hsom pim EXN=FE)
h ’ h—0 h -
FE=1(E), o heom pm EXN=TE),
h ’ h—0 h -

Hence f'(£)=0.
Example Consider the function f (X) = sin X The function is both continuous and

differentiable everywhere, hence it is continuous on [0,27] and differentiable on (a,b).
Moreover

f(0)=sin0=0, f(27)=sin27=0
so that f satisfies the hypotheses of Rolle’s theorem on the interval [O, 27[] . Since

f'(c)=cosc. Rolle’s theorem guarantees that there is at least one point in (0,27 ) such that

cosc=0
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which yields two values for ¢, namely ¢, =z/2 and ¢, =37/2

Example Verify that the hypotheses of Rolle’s theorem is satisfied on the given interval and
find all values of ¢ that satisfy the conclusion of the theorem

x> —1

(=21 1)

X

Solution
On the interval [—1,1] f (X) is continuous and it is differentiable on (—1,1)

(xz—l)l(x—z)—(x—z)'(xz—l) ~ 2x(x—2)—(x2—1) 22X —4x—xX+1

(x-2) ey (e

f'(x)=

f’(§) =0

EP—45+1=0
which has the roots & =2 3, & =2+ J3
Hence £=2- /3 satisfies the theorem.

9-2 Mean-Value Theorem
Let f be differentiable on (a, b) and continuous on[a, b] . Then there is at least one point & in

(a,b)such that f (b)— f (a) = f'(£)(b-a).
Proof

_ A

The slope of g(x)is Q :w

since (X) passes through the point (a, f (a)) ,

then the equation of the line is defined by f (b
9(x)- f (2)=Q(x-a) = e

then g(x)=f(a)+Q(x-a). f(a)f--+

Let a X b

v

F(x)=f(x)-g [f )+Q(x— a] f(x)—f(a)—M(x—a)

—a
Hence we obtain the function F (X) which is continuous on[a,b], differentiable on (a,b) and
F(a)=F(b)=0.By Rolle's Theorem, > £ €(a,b)such that F'(£) =0.

Fi(x)= 1(x)— ®)=F(3)

b-a

(e)- 1)

b-a
_—@=O.Hence f(b)— f (a): f'(ég)(b_a)'

Example Let f (x)=x’+1. Show that f is satisfies the hypotheses of the Mean-Value

Theorem on the interval [1, 2] and find all values of £ in this interval whose existence is

guaranteed by the theorem.
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Solution
Because f (X)is a polynomial, f is continuous and differentiable everywhere, hence is
continuous on [1,2] and differentiable on (1,2). Thus, the hypotheses of the Mean-Value
Theorem are satisfied with a=1and b=2. But
f(a)=f(1)=2, f(b)="f(2)=9
f'(x)=3x*, f'(c)=3c’
so that the equation
, f(b)-f(a
(=01
—a
& 3£° =7 which has two solutions
E=47/3 and &=—-/7/3
So & =/7/3 is the number whose existence is guaranteed by the Mean-Value Theorem.
9-3 Cauchy's Theorem
Let f(x)and g(xX)be continuous and differentiable function over the interval [a,b]and

g’(x) #0 over[a, b] . Then there exists an interior point X =& to the interval [a, b] such that

f(b)-f(a) _f'(¢)

g(b)-g(a) 9'(¢)

Proof

_f(b)-f(a)
Let define Qby Q = W
Notice that ¢ (b) -g (a) # 0 since if not, ¢ (b) =g (a) then by Rolle's Theorem, g’(x) =0at
a point interior to[a, b] . It contradicts to the condition of the theorem.
Let form a function F (x) = f (x)— f (a) —Q[g (x)-9 (a)] , which satisfies the condition of
the Rolle's Theorem, then there exists a number x = £,a < £ <b, such that F'(§ ) =0. Since
t'($)
9'($)

. Hence

F'(x)=f'(x)-Qg'(x), thenF'(&)=f'(£)-Qg'(£)=0= Q=

9-4 L' Hopital's Rule

Consider the function F (x)= f (x)/g(x), where both f(x)=0and g(x)=0whenx=a.
Then, for any X > athere exists a value &, a <& < X such that

f(x)-f(a)_f(5)

9(x)-g(a) g'(¢)

f)_f()

9(x) 9'(¢)

Now as X — a,& — a, therefore when the limit exists

or

This result is known as I' Hopital's Rule and is usually written as
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im f (X) =lim f’(x)
() g ()

: X—1
Example Evaluate lim Coj

X=0 X° —X
L'Hopital's Rule can still be applied in cases where f (Xx)—>ooand g(x) —>oowhenx —>a,

simply by writing
) V() >
xaag( ) xaal/g(

Now 1/ f (x) > 0and 1/g(x) —> 0as x —aand the rule applies. Therefore,
e Y
o000 R Lo 0T/ [1007
=lim (x) || 9'(x) ? 1mLX)
i <x>H s

tim ) _ g £
x>a g (X) x-a g (X)
Similarly, if f (x)and g(x)both tend to zero, or both tend to infinity as X tend to infinity

Hence

the rule applies. By writing X =1/u

o)~y = (4 o )

:lim{ (1/u)/g'(1/u) } =lim F'(x)
u—0 X—>0 g ( )
If, after one application of I' Hopital's rule the limit is still indeterminate, the process can be
repeated until a determinate form is reached.

Example Evaluate
2

(i) im———— (ans 1/2) (i) lim x’e™ (ans: 0)

X—0 X
9-5 Taylor's Theorem for Functions of One Variable
Suppose that the function y = f (X) has (n+1)th order derivative in the neighborhood of the

point X=a. We will find the polynomial of order n at most such that
P.(a)=f(a).R/(a)='(a).P(a)= f"(a)....R" (a) = {" (a)
The sought-for polynomial is of the form
P,(x)=C,+C,(x~a)+C,(x~a) +C,(x~a) +---+C,(x~a)’
Let calculate the nth derivative of P, (x)
P/(x)=C, +2C, (x—a)+3C,(x-a)’ +---+nC,(x~a)
P/(x)=2C, +6C, (x—a)+--+n(n-1)C,(x-a)""
P"(x)=6C, +4:3-2C,(x~a)+---+n(n-1)(n-2)C,(x-a)"

n-1

3
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P (x)=n(n-1)(n-2)---3-2-1-C,

Then we can obtain
f(a)=C,
f'(a)=C,
f"(a)=2-1-C,

:f(”)(a):n(n—l)(n—2)---2-1-Cn

and hence
C,=f(a)
C =f'(a)
1
C,=—f"
=Lt
1
C:_fm
=155 1@
C, =Lt (a)
" n!

Therefore, we obtain
P.(x)=f (a)+ﬂf'(a)+ﬂf"(a)+ﬂf"'(a)+...+(x‘a)n £ (a)
1 1-2 1-2-3 n!
Let R, (x)be the difference between the function f (X)and the polynomial P, (x); that is,
R, ()= f (x)=R ()

Then

x—af

f(x):f(a)+$ff(a)+(X;?) r(a)+ .

@)+ U3 0 @) 4R (x)
R, (X)is called the remainder and is defined by

(x-a)™

% 00=" (e @)

where Q(X) is the function to be defined.

Now we have

f(x):f(a)+xl;!af’(a)+(x_a) @)+ 2 ey B2 o (22)

we will find Q (X) .

Consider an auxiliary function F(t),a <t <X which is define as

F(t)=f(x)-f(t)-

By computing F'(t)and simplifying, we obtain

X—t
1

f'(t)——(x_t)z f"(t)—---—ﬂf(”)(t)—(x_t)MQ

2!

12



Lecture Note Differentiation

Ff(t):_(x_t)n f (n+1) (t)+(X—t)n Q

n! n!
We can see that the function F (t) satisfies the condition of Rolle's Theorem, then there exists

anumber¢, a<¢ < xsuch thatF'(£)=0. Then

_(X—é)n f(n+1)(§)+(x;§)n Q=0

n! !
Q _ f(n+1) (é:)
and thus,
Rn(x):(x—a) f(n+1)(§)

(n+1)!
which is called Lagrange formula for the remainder. Since ¢ is between X and a we can write

it in the form
E=a+0(x-a)

where @is between 0 and 1; that is 0 <& <1. Then the remainder can be written as

(x-=a)"" .
R,(x)= (n+1) f"a+0(x-a)]
The formula
f(x):f(a)+xl_ff'(a)+(x;;"‘) f”(a)+(X;!a) F7(a)+

n n+1
L0 @ (R € faropeal]o <o

is called Taylor Formula for the function f (x).If, in this formula, a=0 we obtain

£ ()= F(0)4 X £7(0)4 2 £7(0) 4+ X £ (0 "
(x)=F(0)+3 F(0)+ 5 F7(0)+-+ ()+(n+1),

f (n+1) (HX)

which is known as Maclaurin Formula.
Example: Use Macluarin Formula to expand the functions €*,sin X,and cos X.

Exercises
Exercise 1 through 4, use definition of derivative

1 Given y=f (X) =X’ +5x—8, find Ay and Ay/Axas X changes (a) from X, =1to
X, =X, +Ax=1.2 (b)and X, =1to x, =0.8.

2 Find Ay/AX, given y =X’ —x’>—4. Find also the value of Ay/Axwhen (a) X=4, (b)
x=0,(c) x=-1.

3 Find the derivative of y = f (X) =

at X=1and x=3.
X—2

4 Find the derivative of f (X) = ix _i
X+




Lecture Note

5 Differentiate

3-2X

(@)y=

6 Find d—y,given X=Yy\1-y’
dx

Find the derivative of the following functions

7
8
9

10 vy

11

12
13
14

15 vy

16
17

18
19

20
21

22y

f (x)=xcotx
y =tan X—cot X
f (x)=xsin"" X
sin X + cos X
- sin X —cos X
(1+x*)tan™" x—x
2
y =2tsint—(t2 —2)cost

y:

f (x) = arctan X +arc cot X

y=xe"

X2

“lnx
y = e* arcsin X
y = Xsinh X
y=tan"' X—tanh™ X
X2

cosh X
y =sin"' xsinh™' X
y = tanh X — X
_cosh™' x
B X

y:

Derivative of composite function

23

24
25

26

27
28

29
30

31y

f(x):(1+3x—5x2)30
y=+1-x*
f(x)=(3-2sin X)4
1 3 1 5
y =tan X——tan” X+—tan" X
3 5

y =+/cot X

y =</sin” X + 13

cos’ X
y =csc’ X+sec” X

y =~/1+sin”" X
1

tan™' X

,(b) y=
3+2X )y NV

32y

33

34

35
36

37

38
39

40
41

42
43
44

45
46

47

48

49

50

51

52

53

54

Differentiation

1 1

3cos’ X cosX

. a
y:sln(x2 —5X+1)+tan;

_ 1+cos2x
y_l—COSZX
f (t) =sintsin(t+¢)
y =sin"' 2X
Lo 1
y =sin =
y=cos ' e
y=In(2x+7)
y =In’ x—In(InX)
y=tan” (In X)+ln(tan’1 X)

yZ\/lnX+1+ll’l(\/;+l)
y:(a+x)\/m

yzln(m—l)—ln(m+l)

y =sin’ (t3)

y = arcsin X + arccos X’

. X
y=+a’ —x* +aarcsin—

a

. X
y=xva’ —x> +a’arcsin—
a

yzln(x+\/a2 +x2)

f(x)=xaLSinX+ln 1—x

1-x?

2



Lecture Note Differentiation

55 y=cosh'Inx 56 y =tanh’2X
57 Given the function f (x)=e™, determine f (0)+xf'(0).

58 Given the function f (x)= J1+x, calculate the expression f (3)+(x=3)f'(3)
(

59 Given f (X) =tan X, Q X) ln(l X) calculate ;'28;
60 Show that the function y = xe " satisfies the equation xy’=(1-X)y

x2

61 Show that the functiony = xe 2, satisfies the equation Xy’ = (1 - Xz) y

62 Show that the function y = _ , satisfies the equation xy'=y(yInx—1)
I+ X+Inx
Logarithmic Differentiation
63 y=(x+1)(2x+1)(3x+1) 68 y=x"
64 y=3/x 69 y=x"
(x+1)’ 70 y=x""
65 y= 2 4
(x+1) (x+3) 7 ( j
66 y= X

(1) 72 y=(arctanXx)’
67 y=

X=2
y is the function of X and determined in parametric form. Find y' = %
X
X=2t—-1 X =/t
3 78 vt
X =acos’t 1
74 . X = arccos -
=a
y =asin 80 I+t
1 . t
75 ) "
t x=e"
Y=|"7> 81
t+1 y=e?
_ 2at
76 1+t
a(1-t*)
Y mre

X=a(t—sint
82 Compute d—yfortzz,if (t—sint)
dx 2 y =a(l-cost)

83 Show that the function y given in the parametric form by the equations
X =2t +3t?
y=t*+2t°

satisfies the equation
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2 3
(22
dx dx

Find the derivative y' = % of the implicit function y

84 acos’(x+Yy)=b 89 e’ =x+y

85 X—j+y—z=1 90 Inx+e =c

86 Zmyixy 91 WzCarctan%
87 xy= arctan = 92 y*=x’

y
88 Vx+4Jy =+a
Find the derivatives y' of specified functions y at the indicated points

93 (x+y) =27(x-y) forx=2and y=1

X+1

94 ye’+e for x=0and y=1

95 y*=x+Ind for x=1and y=1
X

96 Find y(é) of the function y =sin2X

97 Show that the function y =e ™ cos X satisfied the differential equation y(4) +4y =0
98 Find the nth derivatives of the functions

1 1 I+Xx
ay=— " by=Jx oy=—0 dy=h(+x)  ey=—
I-X 1+X 1-x
f) y=In(1+x) @) y=xe
. d’y
99 In the following problem find —
X
X=Int X = arctant X =arcsint X = acost
a b C d
) {y:ﬁ ) {y:ln(ntz) ){y:«/l_tz ){y:asint
—at X=1nt
X=e€
e>{ et Dy- L
Y= 1-t
100 Use L’Hopital Rule to find the limits
Vs
a)linll I-X . b)lirrolcoshx—l C)lin&tanx_.smx d)lirr(} X .
1 _gin 72 x>0 ]1—cos X x>0 X—sinX =0t X
2
In (sin mx
L S CLLLLO lim(1-x)tan”>  h)limInxIn(x—1)
w7 tan 5X x>0 In (sin X) x>l 2 Xl
1 1 , X
i) lim x* j)lirr11X1*X k) lin%lxSlnx I)lirrll(l—x)“”z

101 Find the approximate values of the followings using the formula
f(x+Ax)= f'(x)Ax+ f (X)
a) coso6l’ b) In0.9 C) tan44° d) arctan 1.05 e) e’
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102 Approximate the functions

a) f(x)=+v1+x forx=02 b)y=¢e" forx=1.05 c)f(x)zg/l_x forx =0.1

1+ X

103 u=+/1-x* , find d?u . find d?y.

104 y =arccos X, find d’y.

105 y =sinxInx, find d’y.

106 f(x)=x—xon the intervals —1<x <0and 0 < X <Isatisfies the Rolle theorem. Find
the appropriate values of & .

107 Test whether the Mean-Value theorem holds for the function f (X) = X — X’ on the interval
[—2,1] and find the appropriate value of &.

108 a) For the function f (X)=x’+2and g(x)=x’—1. Test whether the Cauchy theorem
holds on the interval [1, 2] and find ¢&.
b) do the same with respect to f (x)=sinxand g(X)=cosXx.

109  Verify the following by Taylor’s formula

(x-a) | (x-a)

a)e =e?|1+(x-a)+ 5 T o
2 3
b)sinx=sina+(x—a)cosa—ﬂsina (x-2) cosa+
2! 3!
(x-a)’

C)cosx=cosa—(x—a)sina—
2!

2 3

X X X
d)ln(a+x)=Ina+—- +—+
)in(a+x) a 2a*> 3a
110  Expand Inx in powers of (X — 2) to four terms.

111  Expand tan X in powers of (X —%j to three terms

112 Expand sin X in powers of (% + Xj to four terms.
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Indefinite Integral

1 Antiderivative or Indefinite Integral

Problem: Given a function f (x), find a function F (x)whose derivative is equal to f (x);
thatis F'(x) = f(x).

Definitionl

We call the function F (x) a antiderivative of the function f (x)on the interval [a,b]if

F'(x)=f(x),vxe[a,b].
Definition2
We call indefinite integral of the function f, which is denoted byf x)dx, all the expressions

of the form F(x)+C where F(x)is a primitive of f (x). Hence, by the definition we have
J f(x)dx=F(x)+C

C is called the constant of integration. It is an abitrary constant.
From the definition 2 we obtain

LIfF'(x) = f(x), then ([ £ (x )dx) =(F(x)+C) = f(x)
2.d([ f(x)dx)=f (x)x
3. _[dF(x)=F(x)+C

2 Table of Integrals

Xr+1
1. _[xrdx =
r+1

2. _[ =In[x/+C

+Cr=-1

3. J' :larctan +C_—£arccot—+C (a=0)
x* +a’

a a a
dx
4.sz_az_2a| X+a+c(a¢o)
dx a+x
5. =—1In +C, 0
Ia2—x2 2a |a—-x (a#0)

+C

=In‘x+ x*+a®

6 J- dx
U +a?
7. j\/i_arcsm +C_—arccosa+C(a>O)
8. =sinh™* x+c
I\/x2+1
dx
RN

10. [a*dx= a
Ina

11. jexdx =e*+C

=cosh™ x+c¢C

(a>0)



Lecture Note Indefinite Integral
12. jsin xdx =—-cosx+C
13. Jcos xdx =sinx+C
14. Isinh xdx =cosh x+c

15.Icosh X=sinhx+c

16. Id—xz =tanhx+c
cosh” x

17.j X _tanxsC
COS X

18. j :—coth X+C
sm

19._[ 2 _cotx+C
sm X

ZOI =In tan +C =Incscx—cotx|+C
sin x
dx Vs
21 (- _inlan| 2+ % +C =Intanx+secx|+C
COS X 2 4
3. Some Properties of Indefinite Integrals
Linearity
lJ' )+ +f()] If dx+I x)dx+-- +I
2. Ifalsaconstant, then '[af () dx_af
Moreover,
1
3. If C, then ad——Fa C
j (x)+ I X ) dx " (ax)+
4. Ifj (x)+C, thenj (x+b)dx=F(x+b)+C
5. Ifj (x)+C, then J' (ax+b)dx =%F(ax+b) +C
Example 1

1. I(2x3—35in x+5\/§)dx ans: %x4+3005x+%x\/§+c

2. '[( +—+x\/_jdx ans: %%/x7+ﬁ+gx24&+c

_dx ans: In|x+3[+C
X+3

4, Jcos?xdx ans:%sin (7x)+c

5. J'sin(2x—5)dx ans: —%cos(Zx—5)+c

4 Integration By Substitution
4.1 Change of Variable in an Indefinite Integral
Putting x = ¢(t) where tis a new variable and ¢ is a continuously differentiable function, we

obtain
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j f(x)dx :j fo(t)]p'(t)dt (1)
The attempt is made to choose the function ¢ in such a way that the right side of (1) becomes
more convenient for integration.

Example 1  Evaluate the integral | = j X~/ X —1dx

Solution
Putting t =+/x—1, whence x =t +1and dx=2tdt. Hence,

[xafx=1dx = [(t* +2)t- 2tdt = 2[ (t* +1* ) dt = 2t° + 3¢°
=§(x—1)% +§(x—1)% +C
Sometimes substitution of the form u = (p( x) are used. Suppose we succeeded in transorming
the integrand f (x)dx to the form
f(x)dx=g(u)du
where u=g(x). If Ig u)duis known, that is,
[g(u)du=F(u)+k,

then
_[f (x)dx=F[o(x)]+c

Example 2 Evaluate (1) I (2) J'xzexsdx

dx
\/5X -2
Solution
Putting u =5x—2; du=5dx;dx = %du , We obtain (1)

1u2 2
e

4.2 Trigonometric Substitutions
1) If the integral contains the radical va® —x* , we put x = asint ; whence
Ja®—x* =acost
2) If the integral contains the radical /x> —a® , we put x = asect whence
Vx?—a’ =atant
3) If the integral contains the radical +/x* +a* , we put x =atant whence

Vx?+a? =asect

We summarize in the the trigonometric substitution in the table below.

Expression in
the integrand Substitution Identities needed
a% —x2 X =asint a’—a’sin®t=a’cos’t
JaZ+x? X =atant a’+a’tan’t=a’sec’t
%2 _a2 X =asect a’sec’t—a’ =a’tan’t
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dx
Example 3  Evaluate | = | ———
'|.x2\/4—x2
Solution 5
X

Letx=2sin@, ~2<0<Z = dx=2cos0d@ =
2 2 V4-x?

I_J- 2cos0do _I 2cos0do _lj do

4sin? O\J4cos? @ ° 4sin’@-2cos@ 47 sin’0

1\/4 x?

:lj‘csc2 Hde——lcote C=-=
4 4 4

Example4 | :JL
Jx2+a®

Solution
x=atan6’,—%<6?<% dx = asec’ 8dé

| _I asec’ 0do

Ja’tan?@+a’®
[v2 2
jasec 0do IsecHdH:In|sec0+tan0|+C=In X+a  X.c
a|sec | a a
:In‘\/x2+a2 +x‘—|na+C :In‘\/x2+a2 +x‘+C
A\' 2_
Example 5 Evaluate'[xgzsdx
X

Solution

Letx =5secd

g—zzsecetane or dx =5secdtan0d@
Thus,

J' X _2 J-,253ec 0-25 (5secdtan§)do

53ec6’
X
f 55ec€tan0 do= 5jtan fdo NS
5j(sec 0-1)d0=5tan9-50+C 0
5

We obtaintan 8 =

’ 2
TZES Hencef /X" =25 —x?—25 _5sec” [5) +C
VX2 +1

Example 6  Evaluate [~——dx
X
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5. Integration by Parts
Suppose that u and v are differentiable function of x, then

d (uv) =udv +vdu
By integrating, we obtain
uv :J'udv+fvdu

Or
judv=uv—_[vdu
Example
1. J'xsin xdx (letu=x) ans: —Xxcos X +sin x+C
2. Jarctan xdx (letu = arctan x) ans: xarctan x—%ln ‘1+ x2‘+C
3. szexdx (let u = x?) ans: e* (x* —2x+2)+C
4, _[(xz +7x—5)cos 2xdx  ans: (x2 +7x—5)Sln 2x +(2x+7) CoS2x _ Sm42X +C

6 Standard Integrals Containing a Quadratic Trinomial

mx+n mx+n
6.1 Integrals of the form j dx orj—dx where b® —4ac <0
ax” +bx+c vax® +bx+c

We proceed the calculation by completing square the trinomial and then use the appropriate
formulas or substitutions.

Example 1
1. _[2— ans: ltan‘1 x-1 +C
X°—=2X+5 2 2
2. J.ZL ans: 1 arctanx+2+C
2x% +8x+20 26 J6
X 1 2 X—2
3. | ———dx ans: =In| (x-2) +4|+tan!| =—= |+c
Iz4x+8 2[()} (2)
X+3 1 ) X—=1
4. '[ dx  ans: —In(x —2x+5)+2arctan—+C
x?—2x+5 2 2
5. J.SX—J“%dx ans: 5\/x2+4x+10—7|n‘x+2+\/x2+4x+10‘+C
x? +4x+1
dx

6.2 Integrals of the Form [

(mx+n)vax® +bx+c

By means of the inverse substitution
1

mx+n
these integrals are reduced to integrals of the form 6.1.

1- x+‘/2 x?+1 ‘
. Ans: —iln‘
x+1)\/x +1 V2 ‘ x+1 ‘

6.3 Integrals of the Form [v/ax® +bx-+cdx

By taking the perfect square out of the quadratic trinomial, the given integral is reduced to one
of the following two basic integrals

=t

Example 2  Evaluate I
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2
1)Ix/a2 —xzdx:gx/a2 —x? +a7arcsin5+c;a>0

a
2
2).[\/x2+a2dx:§\/x2+a2 +a?ln‘x+ X’ +a’
Example 3  Evaluate v1-2x—x*dx

7 Integration of Rational Functions
7.1 The Undetermined Coefficients
Integration of a rational function, after taking out the whole part, reduces to integration of the
proper rational fraction
P(x
L (1)

Q(x)
where P(x)and Q(x)are integral polynomials, and the degree of the numerator P(x) is lower
than that of the denominator Q(x). If
Q(x)=(x~a)"(x~1)’
where a, ..., | are real distinct roots of the polynomial Q(x), and «,---, A are root
multiplicities, then decomposition of (1) in to partial fraction is justified:

P(X)E A + A 2+---+L+---+ L + L, =+t L, - 2
Q(x) x-a (x-a) (x—a)” x=1(x-1) (x-1)

where A, A,,.. . L, L,,...,L,are coefficients to be determined.
Example 1 Flnd
—I Ans: —
(x-1)(x+1)’ 2(x+1)
d

2) IZJmAnS |n|X| |n|X ].I——1+C

+c;a>0

x-1

X+1

+C

1
+=In
4

If the polynomial Q(x) has complex roots a + ib of multiplicity k, then partial fractions of the
form

M 4ot M

X+ pX+¢ (x2+px+q)k
will enter into the expansion (2). Here,

X+ px+q=[x—(a+ib) ][ x—(a—ib)]

and A,B,,..., A, B, are undetermined coefficients. For k=1, the fraction (3) is integrated
directly; for k>1, we use reduction method; here it is first advisable to represent the quadratic

2 2
trinomial x*+ px+qin the form (x+§] +(q _pT] and make the substitution x+§ =7z.

3)

Example2 Find

J. Xx+1 de

(x2 +4x+5)
_ X+3 1,
Ans: —m—atan (X+2)+C

7.2 The Ostrogradsky Method
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If Q(x) has multiple roots, then
[P X0 (Y0
Q) Q(x) TQ(x)
where Q,(x)is the greatest common divisor of the polynomial Q(x) and it derivative Q'(x);
Q,(x)=Q(x):Q(x)
X(x) and Y(x) are polynomials with undetermined coefficients, whose degrees are,
respectively, less by unity than those of Q,(x)and Q,(x).

The undetermined coefficients of the polynomials X(x) and Y(x) are computed by
differentiating the identity (4).
Example3  Find

1= (ng_xl)z

I dx  AX*+Bx+C IDx2+Ex+F
(x3—1)2 X x° -1

Differentiating this identity, we get
1 (2Ax+B)(x*~1)-3x*(Ax* +Bx+C) Dx?+Ex+F

(1) (1) T

Solution

dx

or
1=(2Ax+B)(x*~1)-3x* ( Ax* + Bx+C)+(Dx’ + Ex+ F ) (x*-1)
Equating the coefficients of the respective degrees of x, we will have
D=0;E-A=0;F-2B=0;D+3C=0;E+2A=0;B+F =-1
whence
1 2
A=0;B=—=;C=0;D=0;E=0;F=—=
3 3
and, consequently,
J- dx 1 X 2.[ dx

B x -1

(x3—1)2 T 3x*-1 3 ®)

To compute the integral on the right of (5), we decompose the fraction
1 L Mx+ N

3 1 T
x>=1 x-1 x“+x+1

we will find
L=im=-In=-2
3 3 3
Therefore,
J' 3dX Jlpax 1 2X+2 dx:lln|x—1|—lln(x2+x+1)—itan’1&+c
x*-1 34x-1 3x°+x+1 3 6 J3 J3
and
J- dxk X +lInX2+X+1+ 2 tan‘12X+1+C
(x3—1)2 3(X3—1) 9 (x—jl_)2 33 NG

8 Integration of a certain Irrational functions
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[ 3
8.1 Integrals of the type [ R X,[g):Jrg)ql ,(?)):+2)q2 ... [dxwhere R is a rational function
+ +

ax+b
cx+d

and p,,q;, P,,d,,...are integer numbers. We use the substitution = 2" where n is the

least common multiple (Icm) of q,,q,,...
dx
—42x-1

Example 1 Evaluatej\/2 .
X_

Solution
let 2x—1=z*, then dx = 2z°dz , and hence

dx 27°%dz 2’ 1 ,
Jx/2x—1—<‘/2x—1 =] ' -1 =2 ;19" ZI(”“ﬁjdz =(z+1) +2Injz-4+C
= (1+42x1) +In(¥2x-1-1) +C
Jxdx
Example 2 Evaluate answer: [\/7 |n(\/7+1)}+c
J‘i‘/?+l

8.2 Integrals of differential binomialijm a+bx“) dx where m, n and p are rational
numbers.

m+1. . . . . r
If ——is an integer, let a-+bx" = z°* where s is the denominator of the fraction p=—
n S

If m_+1+ pis an integer, let ax ™" +b =z°
n

3
Example 3 Evaluate'[ X“dx g
(a+bx2)5
Solution
3 _3
We haVEJ.Lx?’zj.)&(a_‘_bXZ) 2dx.Weseethat m=3,n=2,r =-3,s =2 and m+1=2
n

(a+bx*)?
, an integer. Then assume

2_a9)2 3
a+bx? =22, then x=(Z - aj ,dx:Z;dzl and (a+bx*)" =2°

Hence,

J- 3 3dX:J-(zzb—aJ : zdz 1%
2)2 b2 (2% -a)?
=b—12j(1—az‘2)dz:b—12(2+az‘1)+C

1 2a+bx

b \/a+bx

Example 4 Workoutj o :(2X —1)(1+x) +C

x*V1+ x? 3x°
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8.3 Integral of the Form

"\ dx (1)
'[ Jax® +bx+c
where P, (x)is a polynomial of degree n
Put

P, (x) dx
— 7 gx=Q,(x)Vax +b Afl——2 2
J-\/ax2+bx+c X=Qua(x)yax+bare s J.\/ax2+bx+c @

where Qn_l(x) is a polynomial of degree (n—l)with undetermined coefficients are A is
number. The coefficients of the polynomial Q,, (x)and the number A are found by
differentiating identity (2).

Example 5 Find IXZ\/ X + 4dx

Solution

J' X2/ X% + 4dx = jx +4X Ax +Bx? +Cx+D)x/x +4+;LJ'\/?L4
X2 +

whence

X" +4x° =(3Ax2+ZBx+C)M+(AX3+BX2+CX+ D)x

A
+
VX2 +4 VX +4 VXZ+4

Multiplying by «/x* +4 and equating the coefficients of identical degrees of x, we obtain

A:E;B:O;C:E;D:O;/‘t:—z
4 2

Hence,

J‘x\/ﬁ X +2X\/— 2In(x+\/ﬁ) +C

8.4 Integral of the form

J‘ dx (3)
(x—a)"Vax® +bx+c

They are reduced to integrals of the form (1) by the substitution

. dx
Example 6 Find j—
xX°Vx% -1

9 A Certain Trigonometric Integrals
9.1 Integral of the Form Isinn xdx and jcosn xdx

If n is an odd positive integer, use the identity sin® x+cos® x =1
Example 1 Find J's.in5 xdx

Solution

jsins Xdx = J'sin4 X sin xdx
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= J'(l—cosz X)sin xdx
= _[(1—2(:052 X+ cos* X)sin xdx
=—[(1—2cos” x+cos" x)d (cos x)
=—cosx+§cos3 x—écos5 x+C

1-cos2x 1+cos2x

If n is even, use half-angled identities sin® x = and cos® x =

Example 2 Find J'cos4 xdx

Solution

2
_[cos“ xdx = J(%j dx

= %J.(1+ 2C0S2X + cos> 2x)dx = %Idx+%_{cos 2xd (2x)+%_[(1+ cos 4x )dx
= E_|'dx+£j(:032xd (2x)+ij'cos4xd (4x) = §x+£sin 2x+isin 4x+C
8 4 32 8 4 32

Type2: (Isinm x cos" xdx)

If either m or n is odd positive integer and other exponent is any number, we factor
out sinx or cosx and use the identity sin® x+cos® x =1

Example 3 Find J'sin3 xcos™ xdx
Solution

Jsin3 xcos™ xdx = J'(l—cos2 x)cos’4 xsin xdx = —J'(cos’4 X — COS 2 x)d (cosx)

-3 -1

If both m and n are even positive integers, we use half-angle identities to reduce the
degree of the integrand.

_ {(cos x)° (cosx)

A
- :|+C=%S€C3X—SGCX+C

Example 4 Find J'sin2 xcos” xdx

Solution

2
'[sinz < Cos® xdx = I(l—cost)(H cos ZXJ dx
2 2

- %I(H cos 2X —cos’ 2x — cos® 2x)dx

=1J'[1+ cos 2x—£(1+ cos 4x)—(1—sin2 2x)cos ZX}dX
8 2

10
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1 1 .

:—j 1+cost——(1+cos4x)—(1—sm 2x)cost dx
8 2

=lj[£—icos4x+sin22xc052x}dx
812 2
1{¢1 1 1¢. ]

=Z| | =dx—=|cos4xd (4x)+=|sin?2xd (sin 2x
8['[2 8j (4x) 2I ( )}

L Lainaxe Lsintox |+
82 8 6
9.2 Integral of the Form Isin mX cOS nxdx,_[sin mxsin nxdx,J.cos mXx cos nxdx

To handle these integrals, we use the product identities

1/. sin mx cos nx =%[sin(m+ n)x-+sin(m- n)x]
2/. sinmxsinnx = —%[cos(m + n)x—cos(m—n)x}

3/.C0S MX COS NX :%[cos(m + n)x+cos(m—n)x}

Example5 Find J'sin 2X €0s 3xdx

Solution

_[sin 2X c0s 3xdx :%j[sin 5x+sin(—x)] :%J'sin 5xd (5x)—%jsin xdx

= —ic035x+£cosx+c
10 2

9.3 Integrals of the Form [tan™ xdx or [ cot™ xdxwhere m is a positive number

We use the formula
tan? x =sec? x—1or cot®> x =csc® x—1
Example 6 Evaluate j tan* xdx

Solution
3
Itan4 xdx = jtanz X(sec? x—1)dx = tan” X

3

tan® x ~
3

tan? xdx = —|(sec? x—1)dx
J I )

tan® x
= —tanx+x+C

10 Integrals of the types jR(sin x,cosx)dx where R is a rational function.

We can use the substitution tan g =tand hence we have

. 1-12 2dt
sinx = >, COSX=——, dXx= >
1+t 1+t 1+t

dx

Example 1 Calculate I

1+sin X+ cos X

11
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Solution

Lettan g =t, then we obtain

2dt
1+t dt
I = = =Infl+t/+C=In
J 2t 1-t? J1+t i+
ot
1+t° 1+t
If the equality R(—sinx,—cosx)=R(sin x,cosx)is verified, then we can make the

+C

1+tan5
2

o . t 1
substitution tan x =t . And hence we have sin X = , COSX= and
V1+t? J1+t?
X =arctant, dx = dt2 )
1+t

Example 2 Calculate | = ILZ

1+sin“x
Solution

-, t2 dt
Lettan x =t,sin”“ x = -, X = 2,then
1+t 1+t

] & ; =I1d;t2=%arctan(t\/§)+c:
(1+t2)(1+1ij + 2

t2

%arctan (\/Etan x) +C

11 Integration of Hyperbolic Functions
Integration of hyperbolic functions is completely analogous to the integration of trigonometric
function. The following basic formulas should be remembered

1)cosh? x —sinh? x =1

2)sinh? x = %(cosh 2x-1)
3)cosh? x = %(cosh 2x+1)

4) cosh xsinh x :%sinh 2X

Example 1 Find J‘cosh2 xdx
Solution
2 1 1. X
jcosh xdx = _[—(cosh 2x+1)dx = =sinh 2x+—=+C
2 4 2

sin xdx

s/cosh 2x

12 Trigonometric and Hyperbolic Substitutions for Finding Integrals of the Form

_[R(x,\/ax2 +bx+c)dx (1)

Example 2  Find 1)‘fsinh3 x cosh xdx 2)j ?>)'[sinh2 x cosh? xdx

where R is a rational function.
Transforming the quadratic trinomial ax? +bx + c into a sum or difference of squares, the
integral (1) becomes reducible to one of the following types of integrals

1)J ( )dz Z)J ( m’+z )dz IR(z,m)dz

The latter integrals are, respectively, taken by means of substitutions
1)z =msintor z=mtanht

12
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2)z=mtantor z=msint
3)z=msect or z=mcosht

dx

(x+1)2 VX2 +2X+2

Examplel findl :J

Solution
We have x*+2x+2= (x+1)2 +1. Putting x+1=tan z, we then have dx = sec’ zdzand

I:j _I sec” zdz _Icosz VX +2x+2

. = +c=2 2T ¢
tan“ zsecz SIn~ z SII’] z X+1

(x+1) \/(x+l
Example 2  Find J'x\/x2 + X +1dx

Solution
We have
2
x2+x+1:(x+1j +3
2 4
Putting
x+£:£sinht and dx :ﬁcoshtdt
2 2 2
we obtain
I:j ﬁsinht—i ﬁcosht-ﬁcoshtdt:ﬁjsinhtcoshztdt—choshztdt
2 2 2 8 8
3 3
:ﬁCOSh t—§jcosh2tdt=ﬁCosh t—g(isinhtcosht+itj+c
8 8 8 3 8\ 2 2
Since sinht:i(x+£j,cosht:£\/x2+x+1and tzln(x+1+\/x2+x+1j+lni
V3l 2 NE 2 NE

we finally have

| = é(x +x+1)% i(x+%}/x2+x+1—%ln(x+%+\/x2+x+1)

Exercises
Using basic formulas to evaluate integrals
1.'[(6x2+8x+3)dx 8J‘ xdx
' 2
2._[x(x+a)(x+b)dx Zéxi?k;
2 J o
3[ (a+bx’) dx a’x”+b
2
J'\/2+X —\/2 x? 10"'.1_’)_()(6
x2dx
5. [3*e*dx 11'!\/@
1-3x i
6. arcsin x
-[3+2x 12._[ / = dx
7._[\/a—bxdx

13
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13, d

17. J'e xdx
18.jx-7x dx

19J*3 2X
5x° +7

20. J' 3x+1

\/5x +1

eX -1

22.JeX\/a—bede
. dx

23. Inx)—

3 _[sm( nx) "

COS ax
24. j
SII’] ax

25, j V1+3c0s? x sin 2xdx

X
arctan —
2 dx

26'j 4+ %

27 J arctan2
14 4x?

28._[sec (ax+b)dx

29. j gix dX

Jx
dx

30.
J‘sinx
a

31.[ Xdx
cos? x?

32._[xsm 1—x2)dx

Indefinite Integral

33 [ 4

sin X cos X
34.-'- Sin 3x

3+Cc0s3x
35I sin X cos X dx

\/cos X —sin? x
36, J-1+sm3x

C0S” 3X
37. j 2sinh 5x —cosh 5x) dx

dx

384d
x* —4x+1

39.])“r dx

40_'. 2+3X
2+ 3x?

41jxIn X

42. j a*™ cos xdx

2
43, g/% dx
4. Xdx

Ji-x*

2
45 j sec” xdx

' V4 —tan? x

46, I31+Inx

e L xIn(1+ x?)+1
47j 1+£2 ) dx

arccos —
51. j;de

NV

52. Applying the indecated substitutions, find the following integrals

a')J.X X -

dx
b)J‘m,X:—Int

C)J 5x2—3 7dx,5x2—3:t

14
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J- cos xdx

J1+sin?x

t=sinx

Indefinite Integral

Applying the suitable substitution, compute the following integrals

arcsm X
53. j

54.Ix\/x +1dx

55..[ xdx

\V2x2 +3
56. | V1+‘&dx

o I\/_\/1+
> '[\/1 x? arcsin x

59. [ x(2x+5)" dx,t = 2x+5

. . dx
66. Find the integral I—
JX(1-x)

60. I“—de X =t?

1+f
61I
x\/2x+
62_[)(—’1:2 :ex —l
63. Iln 2X dx
In4x X
64. —dx
Ve +1
sin® xdx
65.
I\/cosx

by applying the substitution x =sin®t

67. Find the integral J\/az +x*dx by applying the substitution x = asinht

By using the fomula of integration by parts

68..[In xdx

69. I tan™" xdx
70. .[sin’1 xdx
71. Ixsin xdx
72. I X €0s 3xdx

73..feixdx
74.Ix-2’xdx
75.J'x2 In xdx
76.Iln2 xdx

Integration involving quadratic trinomial expression

8 J.2x —5x+7

86'J.x +2x+5

87J.x +2x

88. |

3x>—x+1

77..|'xtan‘l xdx
78. '[ xarcsin xdx

79.Jln(x+m)dx

Xdx
sin? x
81. Ie sin xdx

82. _[3* cos xdx
83._[3in(|n X )dx
84.I(arcsin x)2 dx

80.[—

89.IL
X5 —=7x+13

90 I 3x-2
x? —4x+5
2
91 J‘ X“dx
NG —6x+10

92.| 4dm

15
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3x 6 dx
93. 97. | —F/—
'[ Jx? —4x+5 Ix\/x2+x+1
2x 8
94. 4d 98.
'[\/1 X— X '[
95. —dx
'[\/ —-2x+1
Py
Find the Integrals
dx
108 | ————— .
J.x+a)(x+b) 113'[ (x+1)°
—-5x+9 dx
109. | =——=""dx 114,
J.x —5X+6 I 4x+3)(x2+4x+5)
110[ ox
(x+1)(x+2)(x+3) 115. Ix 1
2x* +41x-91 3x+5
111. dx 116. —d
Joaterae-a) I ey
5x° +2
Ostrogradsky’s Method
113. IX4+2d
X +x+1)
_ X 2x+1 ' 2x® x?
Ans: — T [arctan 7 ~2In(x* +X+1)+T_T+7+2X+C
4x° -8 _ —1)?
114.I ( < X) ~adx Ans: 3x X +In(x2 1) +arctanx+C
(x=1)" (x*+1) (x=1)(x*+1)  x*+1
2 2
-1) d
115.J. (X ) X3 Ans: L+X (X 2) +— arctanx+C
(1+x)(1+%?) 2(1+ %)’ R
116.]L2 Ans: 21X 3+1| L ! ¢
X (x°+1) 3 S 3(X +1)
117,]#3 Ans:i arctanx+1+ 23(X+1) s 18(x+1) |ic
x2+2x+10) 648 3 x"+2x+10 (x2+2x+10)
118. Iida Ans: garctan(x+l)+§ x+1 X +C
(x*+2x+2) 8 8 X +2x+2 4(x* +2x+2)
119.J'3X—+43dx Ans: ¢ - 37X +103¢ 3257 aretan x
xz(x2+1) 8x(x +1) 8

16
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Compute integrals of the form I R x,(

120.]\5§;idx

121. %dx

122'!5ﬁ%%%=:

123j §X1—x

124, o
x+1+\/(x+1)3

Integration of binomial differentials

128.Ix3(14—2x2)_2dx

dx
e
dx
X* /14 X

130.]

131.j

G (2 + x3)3
Trigonometric Integrals
132. J' cos’ xdx

133. Isin5 xdx
134, jsin2 x cos® xdx

135. Isinﬂcos5 Xdx
2 2
136. Isinz X c0s? xdx

cos X
sin® x
138.I5|n xdx

139. jsinz X c0s? xdx

137. j

Integral j R(sin x,cos x)dx

151, | ——
-[3+5003x

156. | —
Ism X+ COS X

COS X
dx
1+cosx

157.]

Indefinite Integral

I

dx
125'IIET1?7?
VX+1+2
(X+Q2—Jx+1

VX+1+2
(X+Q2—Jx+1

126.j dx

127.j dx

140. jsin2 xcos? xdx

1l J‘COS X

142, | ———
J’sm xcos* x

dx

145..[sm 3xcos5xdx
146. Isinlesinledx

147.jcos§sin§dx
2 2
148.Isin§sinﬁdx
3 3
149. _[cos(ax+ b)cos(ax—b)dx
150..[sin wtsin(at+¢)

dx

8—4sin x+7cos X
dx

COSX+2sin Xx+3

160. J- sin X I
(1-cos x)

158.[

159.[

17
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161. | lrtanx,,
1-tanx

Integrations of hyperbolic function
162. [ sinh® xcx

163. j cosh” xdx
164. jsinh3 x cosh xdx
165. Isinhz x cosh? xdx

Integral jR(x,M)dx
169. [+/3-2x— x?dx
170. [N/2+ xdx
171, [N/x? 2%+ 2dx
172. [\/x? - 4dx
173. [\/x? + xdx

Indefinite Integral

dx
166. I sinh? x cosh? x
167._|‘tanh3 xdx

dx
sinh? x + cosh? x

168. j

174. J\/ X% —6x — 7dx

175. I(x2 +X +1)§dx
dx

176.J(x—l)\/xz —3x+2

27



Lecture Note Definite Integral

Definition Integral

1. Riemann Sum
Let f(x)be a function defined over the close interval a < x <bwith
a=X, <X <...<X, =bbean arbitrary partition in n subinterval. We called the

Riemann Sum of the function f (x)over[a,b] the sum of the form

n

=> f(&)Ax

wherex, , <& <X, A, =X —X,, 1=12,..,n.

2. Definite Integral
The limit of the sum S, when the number of the subinterval n approaches infinity and

that the largest Ax,approaches zero is called definite integral of the function f (x)
with the upper limit x =b and lower limit x=a

Jim 376 () o =[] 1 (xpn

or equwalently

lim Zf )AX, _I f (x)dx

If the function f ( ) is continuous on [a, b] or if the limit exists, the function is said to
be integrable on[a,b].

If a is in the domain of f, we defined I dx Oand If fis integrable on[a b] then we

definej' f (x)dx:—j f (x)dx.

Example 1 Find the Riemann Sum S, for the function f ( ):1+ X over the interval

[1 10] by dividing into n equal subintervals, and then find the limit limS_ .

Solution
10-1_9 g,ﬁ:xi:onriAxi:1+ﬂ
n n
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and hence f (§)=1+1+%:2+%
S, :z f (égi)AXi
i=1
ot
i=1 n,n

n

18 8l .
=214+ 22
n ; +n2i§‘|
:%n+%(l+2+---+n)

ﬂn(n—l)
n? 2

:18+§(1—1j
2 n

=18+

then

lims, =lim| 18+ 34 1-1]|-18+ 8 117
n—oo X—>00 2 n 2 2

Example 2 fl(ZXZ ~8)dx
Solution

- . . . . 4
Divide the interval [—1,3] into n equal subintervals. Hence we obtain Ax, =— . In each
n
subinterval[x_;, X |, choose & such that & = x, +iAx, = L
n

n

n N2
2(—1+ ﬂj - B}E
i=1 i=1 n n

D (&)X

n [ H P2
2(1—ﬂ+16; j—s}f
=i n n n

n [ 16i 32i2}4
=) | b—+—|=
| n n° |n
n (24 64i 128i°
:z T T T3
= n n n
24 64 128,, ., )
_—Fn—F(1+2+~--+n)+?(1 +2° 4o 0?)
n(l+n n(n+1)(2n+1
__pq 84 1(10) 128 n(n+1)(2n+)
n 2 n 6
:—24—32(1+£j+@(2+§+i2]
n 6 n n
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[ (2x* -8)x = Iile: f(£)Ax,

n—oo i

_ |im(—24—32(1+3]+@(2+§+%D
n—oo n 6 n n

_o4-324128__ 40
3 3

Subinterval property
If f is intergrable on an interval containing the points a, b, and c, then

Lc f (x)dx:J‘: f (x)dx+'|‘bC f (x)dx

no matter what the order of a, b, and c.

3. The first Fundamental Theorem of Calculus
Theorem A First Fundamental theorem of Calculus

Let f be continuous on the closed interval [a,b] and let x be a variable point in (a, b),
then

d ex
& a (t)dt: f(X) A
y="f(t)
}f(X)
a X X+h *
Proof
For x € (a,b)we define F (x) :I: f (t)dt, then
d ex
= (tyt=F’
17t (o= (1)
:”mF(x+h)—F(x)
h—0
R l X+h X
:LmE[L f(t)dt—Lf(t)dt}
. 1 x+h
:'h'f.?ﬁ o f(t)at

But J.:m f (t) dt represents the area bounded by x-axis the curve f (t) between x and
x+h, which is approximate to hf (x); that isJ‘XX+h f (t)dt = hf (x). So,

d ¢x .1
i f(t)dt:leFhf (x)=f(x).
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Nlw

Examplel a t X—
dx \/'[2—1-1 VX
Example2
dles, d X,
—U tan tcostdt}:—[—j tan tcostdt}
dx LJx dxL 74

__4d Ixtanztcostdt = —tan? Xcos X
dx L74

oo d] e
Example3 Find &Dl (3t-1) dt}

Solution
Let u=x? = du = 2xand hence

%sz (3t-1) dt} - %Ul“(st -1) dt}
:dd IRESY :u

u X
=(3u—-1)2x =6x* - 2x

Theorem B Comparison Property
If f and g are integrable on [a,b]and if f(x)<g(x) forall xin [a,b], then

Jj f (X)dx < Jj g (x)dx
Proof
Over the interval[a,b], let there be an arbitrary partition a=x, <x <---<x, =b. Let

& be a sample point on the i"” subinterval[x,_,, x | , then we conclude that
f(&)<9(&)
F(&)ax <g(&)Ax

n

Zf ) AX, <2g

I|me ) AX, <I|m29

n—oo n—ow

L (x) stg (x)dx

Theorem C Boundedness Property
If f is integrable on [a,b]and m< f <M for all x in[a,b], then
y A

m(b-a)< jf( Jdx <M (b-a) M
Proof / y=f(x)

Let h(x)=m,Vxe[a,b], thenh(x) < f (x),Vxe[a,b].
Hence,

Lbh(x)dx < J': f (x)dx m
m(b—a)sj:f(x)dx a

. 4
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By similar way, letg(x)=M,Vxe[a,b], then
f(x)<g(x),vxe[a,b]

J.: f (x)dxsj:g(x)dx
[t (x)ax <M (b-a)
Therefore m(b—a) sj: f(x)dx<M (b-a)

4. Second Fundamental Theorem of Calculus and Mean value theorem

For Integrals
Second Fundamental Theorem of Calculus

Let f be integrable on [a,b]and F be any primitive of f on[a,b], then

[ (x)dx=F(b)-F (a)
It is also known as Newton-Leibniz Formula. For convenience we introduce a special
symbol for F (b)— (a )by writing

)=[F(x ]orF )-F(a)=F(x)

3°

Examplel Jj x2dx = X3 —12?5—% 1:137 39
2
sin* 2x|*

Example2 Iozsin3 2XC0S 2xdx =

0|

0

Mean Value Theorem for Integral
If f is continuous on[a,b] , there is a number ¢ between a and b such that

[ (tyt=f(c)(b-a)
Proof
Let F(x)zLX f(t)dt,a<x<b
By Mean value theorem for derivative, we obtain
F(b)-F(a)=F'(c)(b-a)
[(t(t)dt-0=f(c)(b-a)
[t (t)yt=f(c)(b-a)

= —j t)dt is called the mean value, or average value of f on [a,b]

Examplel Find the average value of f (x)=x"on the interval [1,4]
Solution

b 4
f(x)ave b—laa f (x)dx:ﬁ{xzdx:%ﬂ:?
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Example2 Find the average value of f (x)=cos2x on the interval [0, 7]

5. Change of variable in definite integral
If f(x)is continuous over the close intervala < x<b, if x=¢(t)is continuous and

its derivative is ¢'(t)over the interval o <t < 8, where a=¢(a)and b =¢(4)and if

f [ p(t) ]is defined et continuous over the interval o <t < 2, then

[[t(x)ax =" [o(t)]p'(t)t
Examplel Find J: x*+Ja® - xdx (a>0)
Solution
Let x=asint,dx=acost, t= arcsing, a=arcsin0=0and g = arcsinlzg . then we
obtain

_[Oaxlea2 —x%dx = faz sin? t(\/a2 —a? sinzt)acostdt

4
z a* 2z .
:a“j smztcosztdt:—J' sin? 2tdt

0 4 Jo

R

za
16

4 4
= a—r(l—cos 4t)dt = a—(l—lsin 4tj‘ =
8 -0 8 4

dx
l+\/;

Example3 Evaluate _[Olnleex —1dx let e* —1 = z* (answer: 2—%)

Example2 Evaluate _[04 let x =t (answer: 4—21In3)

6. Integration by parts
If the functions u(x)and v(x)are continuous differentiable over [a,b], we have

I:u(x)v’(x)dx = u(x)v(x): —I:v(x)u’(x)dx

Examplel Evaluate J'fxcos xdx (answer: %—1)

e’ +3

1
Example2 Evaluate _[0 x’e**dx (answer:

)

Example3 Evaluate '[O”ex sin xdx (answer: %(e” +1))

7. Improper Integral

Improper integrals refer to those involving in the case where the interval of
integration is infinite and also in the case where f (the integrand) is unbounded at a
finite number of points on the interval of integration.

7.1 Improper Integral with Infinite Limits of Integration

N
Let a be a fixed number and assume that I f (x)dx exists for allN > a. Then if

a
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N +00

lim f( )dx exists, we define the improper integral J. dx by

N -+
+00

j f(x)dx = lim a f(x)dx

N —+o
a

The improper integral is said to be convergent if this limit is a finite number and to be
divergent otherwise.

+o0 dX
Example Evaluate | = | —
1 X
Solution
o N
Tdx . Fdxo 1
—=lim | ==Ilm|-=| =Ilim|-—+1|=1
X N~>+oc1 X N —+0 X A N —>-+o0

Thus, the improper integral converges and has the value 1.

Example Evaluate I d—)p( J. xe 2*dx

Let b be a fixed number and assume J. dx exists for allt <b. Then if

b
lim | f (x)dx exists we define the improper integral

t—>—o
t

b

j' f(x)dx=lim | f (x)dx

t—>—o0

The improper integral J. dx is said to be converge if this limit is a finite number

and to diverge otherwise. If both J‘ x)dx And '[

converge for some number a, the improper integral of f (x)on the entire x-axis is
defined by

+00

J. f(x)dx:jo f (x)dx++f f (x)dx

—0

+00

+00 dX
Example Evaluate answer: —— (answer:
P ;[01+x2 ( 7) ;[ox2+2x+2( 7)
7.2 Improper Integrals with Unbounded Integrands
If f is unbounded at a and I dx exists for all t such thata <t <b, then

b

f(x)dx=lim | f (x)dx

t—>a*

D ey T
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If the limit exists (as a finite number), we say that the improper integral converge;

otherwise, the improper integral diverges. Similarly, if f is unbounded at b and
t

J. f (x)dxexists for all t such thata <t <b, then

a
t

b
If x)dx = lim | f (x)dx

t—b™

If f is unbounded at ¢ where a < ¢ < b the improper integral I dx and I

both converge, then I dx j dx+ I

We say that the mtegral on the Ieft diverges |f either or both of the integrals on the
right diverge.
1 3
Example Find Id—xz/s J.i
0 (X —1) 0 X—= 2
Note:

1.Forx>a,if 0< f(x)<g(x)and if '[ x) dx converges, then '[ X) dx

a

+00

converge and I X) dx < I
dx
Example Investigate the convergence of _[ (1—)
+e
2.Forx>a,if 0< f(x)<g(x)andif J. x) dx diverges, then J. dx

diverges.

: Tx+1
Example Investigate the convergence of f —dx

L X
3. If Hf (x)|dx is convergent then I x)dx is also convergent, specifically

a
absolute convergent.
. Fsinx
Example Investigate the convergence of _[ ——d
X
8 Area Between Two Curves

8.1 Area Between y = f (x)and y=g(x)
If fand gare continuous functions on the interval[a,b]

,and if f(x)>g(x)forallxin [a,b], then the area of Py=109

the region bounded above by y = f (x), below by E@
y=g(x), on the left by line x=a, and on the right by y=g(x) X
the line x =D is defined by

A:Z[f (x)—g(x) Jdx
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Examplel Find the area of region bounded above by y = x+6, bounded below by

y = x*, and bounded on the sides by the lines x=0and x=2. ans: 34

Example2 Find the area of the region enclosed between the curves y = x*and

125
=X+6. 222
y 6

8.2 Area Between x=v(y)and x=w(y)

If wand vare continuous functions and if
w(y)=v(y)forallyin [c,d], then the area of the

region bounded on the left by x=v(y), on the right
by x=w(y), below by y=c, and above by y=dis
defined by

A= JL(0) () J

Examplel Find the area of the region enclosed by x = y*andy = x—2, integrating

v

with respect to y . (ans: %)

Example2 Find the area of the region enclosed by the curves y = x*and y = 4x by
integrating a/. with respect to x b/. with respect to y

8.3 Area in Polar Coordinates

¥
4

(Lo ()T - (0)] oo

a

A=

Example Calculate the area enclosed by the cardioidr =1-cos & (answer: 377[)

Example Find the area of region that is inside the cardioid r = 4+ 4cos & and outside
the circle r =6 (answer: 183 —4r).

9 Volume of Solid
9.1 Volume By Cross Sections Perpendicular To The X-Axis
Let S be a solid bounded by two parallel planes perpendicular to the x-axisat x=a

andx =b . If, for each x in the interval[a,b], the cross-sectional area of S
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perpendicular to the x-axis is A(x), then the volume of the solid, provided A(x)is
integrable, is defined by

v

V =iA(x)dx

9.2 Volume By Cross Sections Perpendicular To The Y-Axis
S be a solid bounded by two parallel planes perpendicular to the y-axis at y =c and

y=d . If, for each y in the interval[c,d], the cross-sectional area of S perpendicular
to the y-axis is A(y), then the volume of the solid, provided A(y)is integrable, is

defined by d
V = j A(y)dy

Example 1  Derive the formula for the volume of a right pyramid whose altitude is

h and whose base is a square with sides of length a. %azh .

9.3 Volumes of Solids Of Revolution

y

2.3.a Volumes by Disks Perpendicular To the x-Axis

V Ziﬂ[f(X)}de

Example 2 Find the volume of the solid that is obtained when the region under the

curve y = JX over the interval [1, 4] is revolved about the x-axis.( ans: 157”)

Example 3 Derive the formula for the volume of a sphere of radius r. (ans: %zﬁ)

2.3.b Volumes by Washers Perpendicular to the x-Axis
Suppose that f and g are nonnegative continuous

functions such that g(x)< f (x) for a<x<b.Let R

be the region enclosed between the graphs of these M
functions and lines x =aand x =b . When this region >
is revolved about the x -axis, it generates a solid whose M

volumes is defined by

A

v =fa([1 00T L] o

10
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Example 4 Find the volume of the solid generated when the region between the
graphs of f (x) =%+ x?and g(x)=xover the interval [0,2]is revolved

about the x-axis. Ans: 619—0”

2.3.c Volumes By Disks Perpendicular To the y-axis
d
2
v =Jﬁ[u(x)] dy
c

2.3.d Volumes By Washers Perpendicular To y-axis
v=[e{[ut)F Lo oy

2.3.e Cylindrical Shells Centered on the y-axis
Let R be the a plane region bounded above by a continuous curve y = f (x) below

by the x-axis, and on the left and right respectively by the lines x=a and x=b. Then
the volume of the solid generated by revolving R about the y-axis is given by

b
V=27zjxf(x)dx

Example 5 Find the volume of the solid generated when the region enclosed between
y= JX, x=1x =4and the x-axis revolved about the y-axis.
Solution
Since f(x)= JX,a=1b =4, then the volume of the solid is

4 4 5|4
V =27 [ Jxdx =27 x**dx = 2022 =Y (32 1) =127
1 1 5 | 5 5
Example 6  Find the volume of the solid generated when the region R in the first
quadrant enclosed between y = xand y = x*is revolved about the y-axis.

(Answer: 7/6)

3 Length of a Plane Curve
If f is a smooth function on [a,b], then the arc length L of the curve y = f (x) x=a

to x =D is defined by

ijdx dex

Similarly, for a curve expressed in the form x = g( Where g’ is continuous on [c d]
, the arc length L from y=cto y=d defined by

L :J(:-./l{g'(y)]zdy:i /1+(3—;J2dy

11
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Example 1 Find the arc length of f (x)=x* from (0,0)to (1,1)

Solution
f(x)=x*= f'(x)=2x

WZWZ%J(%T—FXZ

Then the arc length is defined by

=—I ( j+x o
LOEREESRE]

:%\@+%In(2+\@)

1

0

If the curve is given in polar coordinate system r = p(@),a <@ < p then the arc
length of the curve is defined by

dr
L= d@ r’+ do
NPT Jyee()
Example2  Find the circumference of the C|rcle or radius a.

Solution
As a polar equation this circle is denoted by r=a, 0<6<2x

2z 2z
Then the arc length is L = J. Ja2do = aJ' do = aH|§” =2ra
0 0
Example 3 Find the length of the cardioid r =1-cos &

If the curve is defined by the parametric equation x = x(t),y = y(t),t €[a,b], then the

length of the curve is
b
L= J.\/[x’(t)]2 +[y’(t)]zdt

Example 4  Find the circumference of the circle of the radius r
Solution

Parametric form, the circle is defined by x(t)=rcost, y(t)=rsintwith t[0,27],
then

2z 2z
L= jx/rzcoszt+rzsin2tdt:Irdt:an
0

Example 5  Find the arc length of the astroid x(t) =acos’t, y(t)=asin’t .(ans6a).

4 Area of Surface of Revolution
Let f be a smooth, nonnegative function on[a, b] . Then the surface area S generated

by revolving the portion of the curve y = f (x) between x = aand x = b about x-axis is

12
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S= 27zj )L+ (%) ]

For a curve expressed in the form x = g(y)where g'is continuous on [a,d ]and
g (y) >0for c<y<d, the surface area S generated by revolving the portion of the
curve from y =cto y =d about the y-axis is given by

S zzz]“g(y),/l+[g’(y)]zdy

Examplel Find the surface area generated by revolving the curve y = v1—x?,

0<x< %about the x-axis.

Solution
=J1-x? :>f Thus,
f(x)=+ J—
S= 2;zj\/1 X2, 14+ ———dx = 2;zjdx P

1-x2

Example2 Find the surface area generated by revolving the curve y = 33x,0< y<?2
about the y-axis.

Solution
y=3Bx = x=g(y)=5 ¥ Thus, g'(y) =y*, then
2
S=27zj.(§y3j\/1+ y4dy=2?”.fy3«/1+ y*dy
0 0
2zl 43/22_7f 32
_?[g(uy) }0_5(17 -1)
Exercises
Work out the following integrals
3
1[ dx:-—l 3
x+1

2. I—dx_—+4arctan2
01+ x4

3. Fsin3 X c0s® xdX = -
0 12

4. Fsec“ odo =2
0 3

5 J-zg (X— )i dx 33r

. —8—
3

(x-2)s +3 2

13
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Z  dx T
6.2 =
IO 2+sinx 33
4 3
* X3 gx=ami 3
3 2

1342

8.jl dxi —arctane— 2~
oet4+e" 4
9.Fsin4xdx:3—ﬂ
0 16

10. I”cos4 xdx = 3
0 8

1 ("% s
L x(1+Inx)
[ 2

! x(1+lnx) 3
Il xdx :Ing
Jox? 43x+2 8

14, —dz_l
07841 1

6
de z
4

0 J1-x? B

6. X~
2J5+4x—x*

17. jo’?[sin3 Xdx =

e dx
e xInx

15.

N wlN

18. =In

Find the derivative of the following functions
19. F J‘ Intdt, Ans: Inx

ZO.I J1+t*dt, Ans:—/1+x*

21F I e dt Ans:—e ™ +2xe™

22.F( _[ cos dt Ans: = cos( 1j
X

Work out the followmg mtegrals

93, J~ xadx

01— x?
24. IO e ¥dx =1
w0 OX _z

0 a2+l —z,(a>0)

25.

1
+——=CO0S X
2

Definite Integral

14
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26Iﬂ 2
27.Ilnxdx:—

dx

28| ——
—o x2 +2x+2

9 dx
'J‘om:9

dx

30.
e xlIn x\/ln

o dx T

o x’tra’ 2a

31.

39 [* dx o
0 e¥+e* 4
- dx 1
J

xIn®x  In2
Compute the improper integrals (or prove their divergence)

3 [*9X
lX

35. jo e ¥dx,a>0

+o 2XdX
= X% +1

37,[ Inx

dx
L x*(x+1)

36.

38.

43. I "X dx

44...‘ arctan X Ix

. o
45, 1+>;3
46.I+w dx

- (x2 +l)2

Definite Integral

15
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47. For p<1, |sj —dxconvergent’7 (Hint: I—>ifor X>e)
xP

48. For what values of k are the mtegraIsJ'

d I w% convergent?

X~ Inx lenx)

49. For what values of k is the integral Ib%,(b <a) convergent?
a(b—x

50. Showthatj X)dx = Zj x)dxif f (x)isevenand '[ x)dx = 0if f (x)is odd.

51. Show that _[oex2 dx = 2}[ e ¥ dx = {%dx

52. Show that I

2
2 -
sin X
= J' dx
arccosx y X

z z
2

53. I (sinx)dx = J' (cos x)dx

54, The Laplace Transformatlon of the function f is defined by the improper integral
F(s)= 7 {F(O}= [ e*f (t)ct
Show that for constar:t a(with s—a>0)

a. {ea‘} =é b. ~ {a} :% c.  {t} =Si2 d. -~ {cosat} =

s’ +a’

e. / {sinat} =

s?+a’

55. Find the first quadrant area under the curve y =g (answer: %)

56. Let .~ be the region in the first quadrant under xy =9and to the right of x =1.
Find the volume generated by revolving .~ about the x-axis. (answer: 81r )

57. Derive a formula V = %ﬂ'l’zh for the volume of a right circular cone of height h
and radius of base r.

58. Let .~ be the region above the curve y = x*under the line y =1and between

x=0and x =1. Find the volume generated by revolving .-~ about a). x-axis, b).
about y-axis.

(answer: a).gn, b).gn)

59. Find the area of the region between y = x*and the lines y=—-xand y =1

60. Find the area of the region bounded by the curve y =sinx, y=cosxand x=0and
X =7/4 (answer:~/2 —1)

16
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61.

62.

62.

62.

63.

64.

65.

66.

67.

Find the area of the region bounded by parabolas y = x*and y = —x* + 6x.
(Answer: 9)

Find the area of the region bounded by the parabola x = y? + 2 and the line

y =x—8. (answer: %)
Find the area of the region bounded by the parabolas y = x* —xand y = x—x*.
1
Answer: —
( 3)

4
Find the arc length of the curve y = %+%from x=11to x=2(ans: %)
X

Find the arc length of the curve x?° + y?* =4 from x=1to x =8(ans: 9)

Find the arc length of the curve 6xy = x* +3from x =1to x =2 (ans: %)

Find the area inside the cardioid r =1+ cos & and outside r =1 (ans: %+ 2)

Find the area inside the circle r =sin @ and outside the cardioid r =1—-cosé&

2 2
Find the volume generated by revolving the ellipse x_2+y_2 =1labout x-axis.
a~ b

Answer: %ﬂab2

17
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| nfinite Series

1. SEQUENCESAND THEIRLIMITS
Sequences
A sequence {a, } is afunction whose domain is a set of nonnegative integers and

whose range is the subset of real number. The functional value a;,a,,a,... are called terms of
the sequence and a, is called the nth term, or general term of the sequence.

Limit of the sequence
If the terms of the sequence approach the number L as n increases without bound, we
say that the sequence converges to the limit L and write
L=Ilima,

N—>-+oo

Conver gent sequence
The sequence {a, } converges to the number L, and we writeL =lima, if for

N—eco

everye >0, thereis an integer N such that |a, — L| < £ whenevern> N . Otherwise, the
sequence diverges.

Limit Theorem for Sequences
If lima, =Landlimb, =M , then

1. Linearity Rule: lim(ra, +sh,)=rL+sM
2. Product Rule: lim(a,b,)=LM

N—seo

3. Quotient Rule: Iim%:ﬁprovided M =0

N—o0

4. Root Rule: limgfa, =YL provided gfa, isdefined for al nand YL exists.

Example:
Find the limit of the convergent sequences

2 4
d{w} b,,{M} o [ +an—n]

n® 5n* +2n? +1

Limit of a sequence from thelimit of a continuous function
The sequence{a, } , let f be acontinuous function such that a, = f (n)forn=1,2,3,...If

lim f (x) existsand lim f (x) =L, the sequence {a, } convergeand lima, = L.

X—>00 X—>00

2 2
Example: Given that the {1n n}converg%, evaluate Iimln -
_e N—co —e
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Bounded, M onotonic Sequences

Name Condition

Strictly increasing a<a<..<a  <a.<..
Increasing a<a<s..<a ,<a <.
Strictly decreasing a>a,>..>a,>a >..
Decreasing aza,=..2a,_,2a ...

Bounded above by M a,<Mforn=123,..
Bounded below by m m<a,for n=123,...
Bounded If it is bounded both above and below

2. INFINITE SERIES; GEOMETRIC SERIES
Aninfinite seriesis an expression of the form
a+a,+a+ = 8
k=1

and the nth partial sum of the seriesis

Sttt e, =23

k=1
The seriesis said to converge with sum Sif the sequence of partial sums {s, } convergesto S
In this case, we write

iak =lim§, =S
k=1

n—eco

If the sequence {S, } does not converge, the series Z a, diverges and has no sum.
k=1

Example: Show that the series Zkz—ik converges and find its sum.
k=1

Solution:
Wehavezizl—i.Then
k+k k k+1
Sn:(1_ij+(i_éj+(i_lj+..._}_(l_ij
2 2 3 3 4 n n+l
L
n+1

. . 1
imS =lim|1-— |=1
n—mSn n—m( rH_]_j

Example: Prove that the series convergent and find its sum

a',1Z.i;‘(2n—1)1(2n+1) bi(éjn ¢ gz_lk

n=1

Geometric Series

A geometric seriesis an infinite series in which the ratio of successivetermin the
seriesis constant. If this constant ratio isr , then the series has the form

Yar=a+ar+ar’+ar’+--+ar"+--,a%0
k=0
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Geometric Theorem

The geometric series D ar* with a= Odivergesif |r| >1and convergesif |r|<1 with
k=0

Proof:
The nth partial sum of the geometric seriesis S, =a+ar +ar’+---+ar""

Then, 1S, =ra+ar’+ar’+---+ar"
=>r§,-S =ar"-a
a(r"-1)

=S =—"r=%1
> r-1

If| |>1:r — 2% 500 = liMS, = oo

N—co

If r|<1=r"—==50=limS, -2

n—eo 1-r
THE INTEGRAL TEST, p-series
Divergent Test

If lima, =0, then the series > a must diverge.
Proof:
Suppose the sequence of partial sums {S, } convergeswith sum L, so
thatlimS, =L. Thenweaso havelimS, , =L.

Wehave§, -S_, =a,, and then it follows that
lima, =lim(§ -§,)=L-L=0
We see that if Zak converges, thenll(imak =0. Thus, ifll(imak #0, thenZak diverges.

Example:
= k1 23 k
——=—+—4—+:--+——+---Diverges since
ok+l 2 3 4 k+1
IimLzl(;tO)
koo K41

Thelntegral Test
If a, = f(k)for k=1,2,3,...wheref isapositive continuous and decreasing function

of xfor x=>1 then

either both converge or both diverge.
Example: Test the series Zlfor convergence
k=1

Solution:

We have f (x) =1isapositive, continuous and decreasing for x>1.
X

J. dx=1lim —dx_llm[lnb]_oo implying that J'ldxdiverges.
X
1

b—eo b—eo
1
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Hence il diverges.
i K

Example: Investigate the following series for convergent

= K =1 1 2 Kk
1. ) — 2. ) — 3—+—+ -t —+-
;e"/s Zzzk2 e ¢ e

p-series
A series of the form

=1 1 1 1
worie gy
k=1
where p isa positive constant, iscalled a p-series.
Note: The harmonic seriesisthe case wherep=1.

Theorem, the p-seriestest

The p-series ik—lp convergesif p>1landdivergesif p<1.
k=1
Proof:

p-1
Let f(x):x—lp F()=-25-  then £'(x)<0if p>0

Hence f (x) :X—lpis continuous, positive and decreasing x=1and p>0.

For p=1, the seriesis harmonic, that isit diverges
For p>0 and p#1 wehave:
< dx 1fp_1 i, p>1

; b
—p:Iim X Pdx=1lim =< p-1
1)( b—>~><::L b—eo 1_p

=,0< p<1
That is, thisimproper integral convergesif p>Zlanddivergesif O< p<1
For p=0, the series becomes

=1 1 1+1

For p<0, wehave Iimip = oo, S0 the series diverges by the convergence test.

k—oo
Hence, a p-series converges only when p>1.
Example: Test each of the following series for convergence

=1 (11
a. b. —_
Solution:
a. vk® =k¥?. S0 p=3/2>1 and the series converges.

=1 i . . . 1
b. We have > — converges, because it is a geometric serieswith |r|==<1.
k=1 € e

And Z% diverges because it is a p-series with p:%<1

= (1 1 .
Hence — —— |diverges.
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4. COMPARISON TEST
© Direct Comparison Test
Suppose 0< a, < ¢ foral k> N for someN. If > c, converges, then > a, also
k=1 k=1

converges.

Let 0<d, <a, foral k>N for someN. If > d, diverges, then )" a, also diverges.
k=1 k=1

Example: Test the series Z kl for convergence.
o3 +1
Solution:
Wehave 3 +1>3“>0fork>1. ThenO< kl < ik . Since Zik converges,
3F+1 3 =3
o = 1
it implies that converges.
P ; 3+1 J
Example: Test for convergence the following series

=1 =1
a y —— b. » —
;&—1 =
® Limit Comparison Test
Suppose a, >0and b, > 0for al sufficiently large k and that II(im%: LwhereL is

finite and positive(0< L < ). Then >_a, and > b, either both converge or both diverge.

for convergence.

Example: Test the series > —
@2 -5

Solution:

We see thatzz—lk isaconvergent seriesfor it is the geometric series with

|r| =%<1. Moreover

N
im2=5__2" _
im 1 2_5 =1
2¢
Hence >’ S g IS convergent too.

The zer o-infinity limit comparison test
Suppose a, >0and b, > O0for al sufficient large k.

-3,
If LLTE =0 and ) b, converges, then " a, converges

If lim2 — o and 3b, diverges, then > a, diverges.

k—>o0

5. THE RATIO TEST AND THE ROOT TEST

Theorem: Given the series Zak with a, >0, suppose that Ikim%z L
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Theratio test states the following:
If L<1,then ) a, converges

If L>1,then )’ a diverges
If L=1, thenthetestisinconclusive

oo k
Example: Test the series Zz—l for convergence.
k=1

Solution:

k
Let a, =%and note that

2k+1

k+1)! 12K+
jim 3t i KD K2 26 and the seriesis
ko= g koe 20 koe (K41)12° koek+1

k!

convergent.

Example: Find all number x> Ofor which the series

DK =x+ 22 +3% +-
k=1
converges.
Solution:

K+1 3kl 3
L:Iim%:lim(k—ﬂj X=X
K—>o0 k®x k—>c0 k
Thus, the series convergesif L =x<1and divergesif x>1. When x=1, the series
becomes i k*®, which diverges by divergence test.

k=1
Root Test:
Given the series Zak with a, >0, suppose that Lim@ = L. Theroot test states the

following:
If L<1,then ) a, converges

If L>1or Lisinfinite, then > a, diverges
If L=1, theroot test isconclusive.

Example: Test the series ) 1

ez (Ink

- for convergence.

Solution:

et a = and note that

k

(Ink)

L =lim4fa, =lim{/(Ink) " :Limik:0<1. Then, the series converges.

k—oo —oo | n

Example: Test the series Z(H %) for convergence.
k=1
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|
Example: Test the series Z k! for convergence.
01-4-7---(3k+1)
6. ALTERNATING SERIES; ABSOLUTE AND CONDITIONAL CONVERGENCE
There are two classes of series for which the successive terms aternate in sign, and

each of these is appropriately called alternating series.
Y (1) 8 =-a+a,-a+-

k=1

oo

(1) =a-a,+a,-a,+

k=1

where a, > 0in both cases.

Alternating Series Test
An dternating series Z ) a, or Z 1)“*a, wherea, >0, for all k, convergesif

both of the following two condltlons are SaIISerd.
V. lima, =0

K—>oo

2/.{a, }is decreasing sequence; that is, a,,, < a, for al k.

o

)k+l

k=1

Solution:
1 1 1 o
WehavellmbK_Ilm—_Oande—E k—lsz+1.Hencetheser|eS|s
+

K—oo

convergent.
1)K
Example: Investlgatetheserlesz 3
= k“+5
o . . : =, cos(nr
Example: Determine if the following seriesis convergent or dlvergent.z \}_ )
n=2 n

Absolutely And Conditionally Convergent Series
The series Zak isabsolutely convergent if the related series Z|ak| converges. The

series ) a, isconditionally convergent if it convergesbut ) |a | diverges.

The Generalized Ratio Test
For the series Zak , suppose a, # 0for k>1and that

ak+1
&

lim| =L

K—oo

where L isarea number or -, then
If L<1,thenthe seriesz a, converges absolutely and hence converges.

If L>1 or Linfinite, the series Zak diverges.
If L=1, thetest isinconclusive.

Example: Determine if each of the following series are absol ute convergent,
conditionally convergent or divergent.
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7. POWER SERIES
An infinite series of the form

;ak(X—C)k :ao+al(x—c)+a2(x_c)2+...

iscalled apower seriesin (x—c). The number a,,a,,a,,... are the coefficients of

iakxk =a,+aX+a,x +-
k=0

which may be considered as an extension of a polynomial in x.
Convergence of a power series

For apower series Z a x“, exactly one of the following is true:
k=0

1. The series overseesfor al x.

2. The series converges only for x=0

3. The series conver ges absolutely for al x in an open interval (—R, R) and diver ges

for |x|> R. It may either converge of diverge at the endpoints of theinterval, x=—-Rand
x=R.
Wecall theinterval (-R, R)theinterval of conver gence of the power series. R is

called the radius of convergence of the series. If the series convergesonly for x=0, the

series has radius of convergence R=0 and if it convergesfor all x, we say that R= oo
k

Example: Show that the power series Z% convergesfor all x.
k=1 -

Solution:
Xk+1
(e L1\ k++1
L= fim[ K+ | X i M
kol X k—>°°‘(k+1)!x‘ ko= k+1
k!

Hence the series converges for all x.

Example: Determine the convergence set for the power serleﬁz \/_

Solution:
By the generalized ratio test, we find
Xk+1
L=Iim ”k+1 =lim Jk |x|:|x|
k—oo K—eo \/ﬁ
JE

The power series converges absolutely if x| <1and divergesif |x|>1.

k
For x=-1: ) ) converges by the alternation series test
k

= Jk
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Sl

Thus, the given-above power series converges for —1< x <1and diverges otherwise.
oo k k

X What isthe

Forx=1: diverges

Example: Find theinterval of convergence for the power seriesz
k=1

radius of convergence?

: : & (x+)
Example: Find theinterval of convergence of the power serlesz F
k=0

Term-By-Term Differentiation and I ntegration Of Power Series
A power series Z a X with radius of convergence R can be differentiated or
k=0
integrated term by term on itsinterval of absolute convergence—R< x< R. More specificaly,
if > a, X for [ <R, then for |x| < Rwe have
k=0
X)=> ka X" =a +2a,x+38,X" +--

k=1

j X) dx = I(Z:; j k (jakxk)dx:ikilx'“HC

=0 k=0

and

Example: Let f be afunction defined by the power series f (x) = ix—'for al x

Show that f’(x)= f (x)for al x, and deduce that f (x)=

Solution:
2 3 4
f’(x)=i Thxt ot Xy
dx 20 31 4
2 3
= ()4—]_ E%ZS E%ES_ f%zg_
20 31 4l
2 3
=1+x+—+x—+
21 3

If we have f ’()() =f ()() ,tf]EﬂW f ()() —Ce*and f (()) -C
x* X 2 B

f(X)=1+x+—++---,then f(0)=1+0+—+—+---=1
T T

SoweobtainC =1. Therefore f (x) =
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8. TAYLOR AND MACLAURIN SERIES

Definition:
If f hasderivativesof all ordersat a, then we define the Taylor seriesf about x=a
to be

o f(k) f/l
51 (a1 () o) (e
O . .

Definition:

If f hasderivativesof all ordersat a, then we define the Taylor seriesf about x=a
to be

f(k)(a)
k!

(x—a)k+~--

w (K ’
5 00 = 10 10 e

Example: Find the Maclaurin seriesfor €, cosx, and sinx
Example: Find the Taylor series about x=1for 1/x

9. TAYLOR'FOMULA WITH REMAINDER; CONVERGENCE OF
TAYLOR SERIES

Taylor’s Theorem
Suppose that afunction f can be differentiated n+1times at each point in an interval

containing the point a, and let
, f”(a) 2 f(n)(a) K
p.(x)=f(a)+ f (a)(x—a)+T(x—a) +~--+T(x—a)
be the nth Taylor polynomial about x=afor f . Then for each x in theinterval, thereis at
least one point ¢ between a and x such that

() (&
R (9= £(0-p, (9= 1

(X— a)n+1

™ (c)
(n+1)!

(X— a)n+1

We canrewrite f (x)=p,(x)+

then we can write f (x)as

"(a ) () (@
f(x)=f(a)+f’(a)(x—a)+ f 2(! )(x—a) tret— f(n+1()!)

and wecall it Taylor’sformula with remainder.

(X— a)n+1

Convergence of Taylor Series
The Taylor seriesfor f convergesto f (x)at precisely those points where the

remainder approaches zero; that is,

- (g o
f(x):k_ofk—!(>(x—a) & lim R, (x)=0

10
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Constructing Maclaurin Series by Substitution
Sometimes Maclaurin series can be obtained by substituting in other Macluarin series

2 3
Example: Using the Maclaurin seriese* =1+ x+§+§+--- —o0 < X < 400
we can derive the Maclaurin seriesfor € * by substituting —xfor xto obtain
2 3

—X —X

e :1+(—x)+u+u+~- —00 < —X < +oo
2! 3!
2 3

or e =1-X+———+--- —00 < X < +o0
2! 3

Example: Obtain the Maclaurin series for ]/(1— 2x’) by using the Maclaurin series

L xRt —lex<l
1-x

11
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