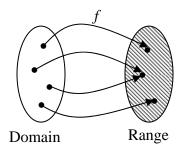
# **Functions, Limit, And Continuity**

### 1. Definition of a function

A function is a rule of correspondence that associates with each object x in one set called the **domain**, a single value f(x) from a second set. The set of all values so obtained is called the **range** of the function.



For a real function f we can define as follow

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = f(x)$$

x can be called the **independent variable** and y the **dependent variable**. The domain of the function f, commonly denoted by  $D_f$  is defined by

$$D_f = \{ \forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y = f(x) \}$$

### **Example:**

**1.** 
$$f(x) = \frac{1}{x}$$
 is defined for  $x \neq 0$ . Hence,  $D_f = \mathbb{R} - \{0\}$ 

2. 
$$f(x) = \sqrt{x^2 - 1}$$
 is defined for  $x \ge 1$  and  $x \le -1$ . Hence,  $D_f = (-\infty, -1] \cup [1, +\infty)$ 

3. 
$$f(x) = \sqrt{1-x^2}$$
 is defined for  $-1 \le x \le 1$ 

### 2. Composition of Functions

$$\underbrace{x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))}_{g \circ f}$$

If f works on x to produce f(x) and g works on f(x) to produce g(f(x)), we say that we have composed g with f. The resulting function, called the **composition** of g with f, is denoted by  $g \circ f$ . Thus,  $(g \circ f)(x) = g(f(x))$ 

**Example:** Given the function f(x) = (x-3)/2,  $g(x) = \sqrt{x}$ . Find  $g \circ f$  and  $f \circ g$ 

Solution

$$(g \circ f)(x) = g(f(x)) = \sqrt{\frac{x-3}{2}}$$
$$(f \circ g)(x) = f(g(x)) = \frac{\sqrt{x-3}}{2}$$

**Example:** Write the function  $p(x) = (x+5)^5$  as a composite function  $g \circ f$  *Solution:* 

The most obvious way to decompose p is to write p(x) = g(f(x)), where  $g(x) = x^5$ , and f(x) = x + 2

### 3. Inverse Functions

### **Inverse Function**

Let f be a function with domain D and range R. Then the function  $f^{-1}$  with domain R and range D is the inverse of f if

$$f^{-1}(f(x)) = x$$
 for all  $x$  in  $D$ 

and

$$f(f^{-1}(y)) = y$$
 for all y in R.

**Example:** Let f(x) = 2x - 3. Find  $f^{-1}$  if it exists.

Solution:

To find  $f^{-1}$ , let y = f(x), then interchange the x and y variables, and finally solve for y.

$$y = 2x - 3$$
, then  $x = 2y - 3$ , implying  $y = \frac{1}{2}(x + 3)$ , hence  $f^{-1} = \frac{1}{2}(x + 3)$ 

### Criteria For Existence of An Inverse $f^{-1}$

A function f will have an inverse  $f^{-1}$  on the interval I when there is exactly one number in the domain associated with each number in the range. That is,  $f^{-1}$  exists if  $f(x_1)$  and  $f(x_2)$  are equal only when  $x_1 = x_2$ . A function with this property is said to be **one-to-one** function.

#### **Horizontal Line Test**

A function f has an inverse iff no horizontal line intersects the graph of y = f(x) at more than one point.

A function is called to be strictly monotonic on the interval *I* if it is strictly increasing or strictly decreasing on that interval.

Strictly increasing on *I*: For  $x_1, x_2 \in I$  such that  $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ 

Strictly decreasing on *I*: For  $x_1, x_2 \in I$  such that  $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ 

### Theorem

Let f be a function that is strictly monotonic on an interval I. Then  $f^{-1}$  exists and is monotonic on *I*.

### **Graph of** $f^{-1}$

If  $f^{-1}$  exists, its graph may be obtained by reflecting the graph of f in the line y = x.

### 4. Inverse Trigonometric Functions

### **Inverse Sine Function**

$$y = \sin^{-1} x \Leftrightarrow x = \sin y \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

The function  $\sin^{-1} x$  is sometimes written as  $\arcsin x$ .

### **Inverse Tangent Function**

$$y = \tan^{-1} x \Leftrightarrow x = \tan x \text{ and } -\frac{\pi}{2} < x < \frac{\pi}{2}$$

The function  $tan^{-1} x$  is sometimes written as  $\arctan x$ 

Definition of Inverse Trigonometric Function

| <b>Inverse Function</b> | Domain                         | Range                                             |
|-------------------------|--------------------------------|---------------------------------------------------|
| $y = \sin^{-1} x$       | $-1 \le x \le 1$               | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$          |
| $y = \cos^{-1} x$       | $-1 \le x \le 1$               | $0 \le y \le \pi$                                 |
| $y = \tan^{-1} x$       | $-\infty < x < +\infty$        | $-\frac{\pi}{2} < y < \frac{\pi}{2}$              |
| $y = \csc^{-1} x$       | $x \ge 1 \text{ or } x \le -1$ | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$ |
| $y = \sec^{-1} x$       | $x \ge 1 \text{ or } x \le -1$ | $0 \le y \le \pi,  y \ne \frac{\pi}{2}$           |
| $y = \cot^{-1} x$       | $-\infty < x < +\infty$        | $0 < y < \pi$                                     |

**Example:** Evaluate the given function

**a.** 
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

**b.** 
$$\cos^{-1} 0$$

**b.** 
$$\cos^{-1} 0$$
 **c.**  $\tan^{-1} \left( \frac{1}{\sqrt{3}} \right)$ 

Solution:

Solution:  
**a.** 
$$\sin^{-1}\left(\frac{-\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$
 **b.**  $\cos^{-1}0 = \frac{\pi}{2}$  **c.**  $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$ 

**b.** 
$$\cos^{-1} 0 = \frac{\pi}{2}$$

**c.** 
$$\tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}$$

### **Inverse Trigonometric Identities**

### **Inversion Formulas**

$$\sin(\sin^{-1} x) = x \qquad \text{for } -1 \le x \le 1$$

$$\sin^{-1}(\sin y) = y \qquad \text{for } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$\tan(\tan^{-1} x) = x \qquad \text{for all } x$$

$$\tan^{-1}(\tan y) = y \qquad \text{for } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

**Example:** Evaluate the given functions **a.**  $\sin(\sin^{-1} 0.5)$  **b.**  $\sin^{-1}(\sin 0.5)$ 

Solution:

**a.** 
$$\sin(\sin^{-1} 0.5) = 0.5$$
 because  $-1 \le 0.5 \le 1$ 

**b.** 
$$\sin^{-1}(\sin 0.5) = 0.5$$
, because  $-\frac{\pi}{2} \le 0.5 \le \frac{\pi}{2}$ 

**Example:** For  $-1 \le x \le 1$ , show that **a.**  $\sin^{-1}(-x) = -\sin^{-1}x$  **b.**  $\cos(\sin^{-1}x) = \sqrt{1-x^2}$ 

### **Some other Identities**

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

### 5. Hyperbolic Functions and Their Inverses

### 5.1 Definition

The hyperbolic sine and hyperbolic cosine function, denoted respectively by sinh and cosh, are defined by

$$sinh x = \frac{e^x - e^{-x}}{2}$$
 and  $cosh x = \frac{e^x + e^{-x}}{2}$ 

The other hyperbolic function, hyperbolic tangent, hyperbolic cotangent, hyperbolic secant and hyperbolic cosecant are defined in terms of sinh and cosh as follows

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$\sec hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} \qquad \csc hx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

### **5.2** Hyperbolic Identities

1/. 
$$\cosh^2 x - \sinh^2 x = 1$$
  
2/.  $1 - \tanh^2 x = \sec h^2 x$   
3/.  $\coth^2 x - 1 = \csc h^2 x$ 

$$4a/.\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$

$$4b/.\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

$$5a/.\cosh x + \sinh x = e^{x}$$

$$5b/.\cosh x - \sinh x = e^{-x}$$

$$6a/.\sinh 2x = 2\sinh x \cosh x$$

$$6b/.\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$7a/.\cosh 2x = 2\sinh^{2} x + 1$$

$$7b/.\cosh 2x = 2\cosh^{2} x - 1$$

$$8a/.\cosh(-x) = \cosh x$$

$$8b/.\sinh(-x) = -\sinh x$$

$$9a/.\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh y$$

$$9b/.\cosh(x-y) = \cosh x \cosh y - \sinh x \sinh y$$

### **5.3 Inverse Hyperbolic Functions**

The Hyperbolic inverses that are important and to be studied here are the *inverse hyperbolic sine*, the *inverse hyperbolic cosine*, and *inverse hyperbolic tangent*. These functions are  $y = \sinh^{-1} x$  (or  $y = Arc \sinh x$ ),  $y = \cosh^{-1} x$  (or  $y = Arc \cosh x$ ) and  $y = \tanh^{-1} x$  (or  $y = Arc \tanh x$ ) are the inverses of  $y = \sinh x$ ,  $y = \cosh x$  and  $y = \tanh x$  respectively.

#### **Theorem**

i/. 
$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$$
 (for any real number)  
ii/.  $\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$  ( $x \ge 1$ )  
iii/.  $\tanh^{-1} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$  (-1 < x < 1)

### 6 Limits

### **Definition:**

To say that  $\lim_{x \to c} f(x) = L$  means that for each given  $\varepsilon > 0$  (no matter how small) there is a corresponding  $\delta > 0$  such that  $|f(x) - L| < \varepsilon$  provided that  $0 < |x - c| < \delta$ ; that is  $0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ .

### **Right-hand Limit and Left-Hand Limit**

By  $\lim_{x\to a^-} f(x) = A$  we mean that f is defined in some open interval (c,a) and f(x) approaches A as x approaches a through values less than a, that is, as x approaches a

from the left. Similarly,  $\lim_{x \to a^+} f(x) = A$  means that f is defined in some open interval (a,d) and f(x) approaches A as x approaches a from the right. If f is defined in an interval to the left of a and in an interval to the right of a, then  $\lim_{x \to a^-} f(x) = A$  iff  $\lim_{x \to a^-} f(x) = A$  and  $\lim_{x \to a^+} f(x) = A$ 

### **Limit Theorems**

Let n be a positive integer, k be a constant, and f and g be functions that have limits at c. Then

1/. 
$$\lim_{x \to c} k = k$$
2/. 
$$\lim_{x \to a} x = a$$
3/. 
$$\lim_{x \to c} \left[ kf(x) \right] = k \lim_{x \to c} f(x)$$
4/. 
$$\lim_{x \to c} \left[ f(x) \pm g(x) \right] = \lim_{x \to c} \left[ f(x) \right] \pm \lim_{x \to c} \left[ g(x) \right]$$
5/. 
$$\lim_{x \to c} \left[ f(x)g(x) \right] = \left[ \lim_{x \to c} f(x) \right] \left[ \lim_{x \to c} g(x) \right]$$
6/. 
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \lim_{x \to c} g(x) \neq 0$$
7/. 
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} \text{ if defined.}$$

### **Continuity at a Point**

Let f be defined on an open interval containing c. We say that f is continuous at c if  $\lim_{x\to c} f(x) = f(c)$ .

Example: 
$$f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ 3 & x = 0 \end{cases}$$

At the point x = 0, f is defined and f(0) = 3

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} = \frac{\sin 3x}{x} = 3$$

We see that  $\lim_{x\to 0} f(x) = f(0)$ . Thus f is continuous at the point x = 0

**Example:** Show that f is discontinuous at the point x = 1

$$f(x) = \begin{cases} -2x+4, & x > 1 \\ x+1, & x < 1 \\ -1, & x = 1 \end{cases}$$

At the point x = 1 the function is defined, that is f(1) = -1

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (-2x + 4) = 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x + 1) = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+1) = 2$$

We see that  $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 2$ . Then  $\lim_{x \to 1} f(x) = 2 \neq f(1)$ 

Hence f is discontinuous at the point x = 1

### **Definition** Continuity on an Interval

The function f is **right continuous** at a if  $\lim_{x \to a^+} f(x) = f(a)$  and **left continuous** at b if  $\lim_{x \to b^-} f(x) = f(b)$ .

We say f is **continuous on an open interval** if it is continuous at each point of that interval. It is **continuous on the closed interval** [a,b] if it is continuous on (a,b), right continuous at a, and left continuous at b.

**Example:** Show that  $f(x) = \sqrt{9 - x^2}$  is continuous on the closed interval [-3,3] *Solution*: We see that the domain of f is the interval [-3,3]. For c in the interval (-3,3) we have

$$\lim_{x \to c} f(x) = \lim_{x \to c} \sqrt{9 - x^2} = \sqrt{9 - c^2} = f(c)$$

So f is continuous on (-3,3). Also

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \sqrt{9 - x^{2}} = 0 = f(3)$$

and

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \sqrt{9 - x^{2}} = 0 = f(-3)$$

So f is continuous on [-3,3].

### **Exercises**

**1** Given 
$$\varphi(x) = \frac{x-1}{3x+5}$$
, determine  $\varphi(\frac{1}{x})$ .

**2** If 
$$f(\alpha) = \tan(\alpha)$$
, verify that  $f(2\alpha) = \frac{2f(\alpha)}{1 - [f(\alpha)]^2}$ .

**3** Given  $f(x) = \ln x$  and  $\varphi(x) = x^3$ , determine  $(f \circ \varphi)(2)$ ,  $(f \circ \varphi)(a)$  and  $(\varphi \circ f)(a)$ .

4 Find the domain of the following functions

a. 
$$y = \sqrt{3-x^2}$$
 b.  $f(x) = \sqrt{3+x} + \sqrt[4]{7-x}$  c.  $y = \sqrt{\ln x + 1}$ 

d. 
$$y = \ln(\ln x)$$
 e.  $y = \arcsin(3x-5)$ 

f. 
$$y = \ln(x^2 - 3x + 2) + \sqrt{-x^2 + 4x + 5}$$
 g.  $y = \frac{\sin x}{\sqrt{x^2 - 4}}$ 

**5** If 
$$f(x) = 2^x$$
, show that a.  $f(x+3) - f(x-1) = \frac{15}{2} f(x)$  b.  $\frac{f(3+x)}{f(-1+x)} = f(4)$ 

**6** If 
$$f(x) = \frac{x-1}{x+1}$$
, show that  $f\left(\frac{1}{x}\right) = -f(x)$  and  $f\left(-\frac{1}{x}\right) = -\frac{1}{f(x)}$ 

**7** If 
$$f(x) = \frac{1}{x}$$
, then show that  $f(a) - f(b) = f\left(\frac{ab}{b-a}\right)$ 

**8** Compute  $\frac{f(a+h)-f(a)}{b}$  in the following cases:

a. 
$$f(x) = \frac{1}{x-2}$$
 when  $a \ne 2$  and  $a + h \ne 2$ 

b. 
$$f(x) = \sqrt{x-4}$$
 when  $a \ge 4$  and  $a+h \ge 4$ 

c. 
$$f(x) = \frac{x}{x+1}$$
 when  $a \ne -1$  and  $a+h \ne -1$ 

9 Prove that

a. 
$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right), \forall x \in \mathbb{R}$$

b. 
$$\tanh^{-1} x = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right), \left( -1 < x < 1 \right)$$

**10** Prove that

a. 
$$\sin(\cos^{-1} x) = \sqrt{1 - x^2}$$

a. 
$$\sin(\cos^{-1} x) = \sqrt{1 - x^2}$$
 b.  $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$ 

c. 
$$\sec(\tan^{-1} x) = \sqrt{1 + x^2}$$

c. 
$$\sec(\tan^{-1} x) = \sqrt{1 + x^2}$$
 d.  $\sin\left[2\cos^{-1}\left(\frac{2}{3}\right)\right] = \frac{4\sqrt{5}}{9}$ 

e. 
$$\tan\left(\sin^{-1}x\right) = \frac{x}{\sqrt{1-x^2}}$$

e. 
$$\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$$
 f.  $\sin(\tan^{-1} x) = \frac{x}{\sqrt{1+x^2}}$ 

g. 
$$\cos(2\sin^{-1}x) = 1 - 2x^2$$

g. 
$$\cos(2\sin^{-1}x) = 1 - 2x^2$$
 h.  $\tan(2\tan^{-1}x) = \frac{2x}{1 - x^2}$ 

11 Prove that  $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right)$  if  $-\frac{\pi}{2} < \tan^{-1} x + \tan^{-1} y < \frac{\pi}{2}$  and use the

fact to prove that

a. 
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
 b.  $2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$ 

12 Compute 
$$\cos \left( \sin^{-1} \frac{1}{5} + 2 \cos^{-1} \frac{1}{5} \right), \sin \left( \sin^{-1} \frac{1}{5} + \cos^{-1} \frac{1}{4} \right)$$

- 13 Prove that  $f(x) = x^2 3x + 2$  is continuous at x = 4
- **14** Prove that f(x) = 1/x is continuous at **a**. x = 2
- 15 Investigate the continuity of each of the following functions at the indicated points:

**a.** 
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at the point  $x = 0$   
**b.**  $f(x) = x - |x|$  at the point  $x = 0$ 

**c.** 
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2 \\ 3, & x = 2 \end{cases}$$
 at the point  $x = 2$ 

16 Find a value for the constant k, if possible, that will make the function continuous

**a.** 
$$f(x) = \begin{cases} 7x - 2, & x \le 1 \\ kx^2, & x > 1 \end{cases}$$
  
**b.**  $f(x) = \begin{cases} kx^2, & x \le 2 \\ 2x + k, & x > 2 \end{cases}$ 

ans: **a.**5

17 Find the points of discontinuity, if any, of the function f(x) such that

$$f(x) = \begin{cases} x+1, & x \ge 2\\ 2x-1, 1 < x < 2\\ x-1, & x \le 1 \end{cases}$$

ans: discontinuous at x = 1

**18** If the function

$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4}, & x \neq 4 \\ c, & x = 4 \end{cases}$$

is continuous, what is the value of c?

**19** For what value of *k* is the following a continuous function?

$$f(x) = \begin{cases} \frac{\sqrt{7x+2} - \sqrt{6x+4}}{x-2}, & \text{if } x \ge -\frac{7}{2} \text{ and } x \ne 2\\ k & \text{if } x = 2 \end{cases}$$

ans:  $\frac{1}{8}$ 

**20** Let

$$f(x) = \begin{cases} 3x^2 - 1, x < 0 \\ cx + d, \ 0 \le x \le 1 \\ \sqrt{x + 8}, x > 1 \end{cases}$$

Determine c and d so that f is continuous (everywhere).

ans: 
$$d = -1$$
,  $c = 4$ 

21 Determine if the following function is continuous at x=1.

$$f(x) = \begin{cases} 3x - 5, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

22 Determine if the following function is continuous at x=-2.

$$f(x) = \begin{cases} x^2 + 2x, x \le -2\\ x^3 - 6x, x > -2 \end{cases}$$

23 Determine if the following function is continuous at x=0

$$f(x) = \begin{cases} \frac{x-6}{x-3}, & x < 0 \\ 2, & x = 0 \\ \sqrt{4+x^2}, & x > 0 \end{cases}$$

- **24.** Determine if the function  $h(x) = \frac{x^2 + 1}{x^3 + 1}$  is continuous at x = -1.
- **25.** For what values of x is the function  $f(x) = \frac{x^2 + 3x + 5}{x^2 + 3x 4}$  continuous?

### **Differentiation**

### 1 Definition

A function f is said to be differentiable at x if and only if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists.

If this limit exists, it is called the derivative of f at x and is denoted by f'(x). Hence,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

**Example**  $f(x) = x^2, f'(x) = ?$ 

**Solution** 

$$\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h} = 2x + h$$

Then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} (2x+h) = 2x$$

**Example** Find f'(-2) if  $f(x) = 1 - x^2$ 

### **Solution**

We can first find f'(x) in general

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left[1 - (x+h)^2\right] - \left[1 - x^2\right]}{h}$$
$$= \lim_{h \to 0} \frac{-2xh - h^2}{h} = \lim_{h \to 0} (-2x - h) = -2x$$

and then substitute -2 for x

$$f'(-2) = -2 \cdot (-2) = 4$$

We can also evaluate f'(-2) more directly

$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h} = \lim_{h \to 0} \frac{\left[1 - \left(-2 + h\right)^2\right] - \left[1 - \left(-2\right)^2\right]}{h} = \lim_{h \to 0} \frac{4h - h^2}{h} = 4$$

**Example** Find 
$$f'(0)$$
 if  $f(x) = \begin{cases} 3x^2 + 1, & x \le 0 \\ x^3 + 1, & 0 < x < 1 \end{cases}$ 

**Example** Find the derivative of  $f(x) = \frac{x}{x-9}$ 

The process of finding a derivative is called *differentiation*. In the case where the independent variable is *x* it is denoted by the symbol

1

$$\frac{d}{dx}[f(x)]$$

read the derivative of f(x) with respect to x

$$\frac{d}{dx} [f(x)] = f'(x)$$

If the dependent variable y = f(x), then we write  $\frac{dy}{dx} = f'(x)$ 

### 2 Rules for Differentiating Functions

Assume that u, v, and w are differentiable functions of x and that c and m are constants

1 
$$\frac{d}{dx}(c) = 0$$
 (The derivative of a constant is zero)

$$2 \qquad \frac{d}{dx}(cu) = c\frac{du}{dx}$$

3 
$$\frac{d}{dx}(x^m) = mx^{m-1}$$
 (Power Rule)

4 
$$\frac{d}{dx}(u \pm v \pm w) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx}$$
 (sum/difference rule)

5 
$$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$$
 (Product Rule)

6 
$$\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$
 (Quotient Rule)

7 
$$\frac{d}{dx} \left( \frac{1}{u} \right) = \frac{-\frac{du}{dx}}{u^2}, u \neq 0 \text{ (Reciprocal Rule)}$$

### 3 The Chain Rule

If we know the derivatives of f and g, how can we use this information to find the derivative of the composition  $f \circ g$ ?

The key to solving this problem is to introduce dependent variables

$$y = (f \circ g)(x) = f(g(x))$$
 and  $u = g(x)$ 

So that y = f(u). We use the unknown derivatives

$$\frac{dy}{du} = f'(u)$$
 and  $\frac{du}{dx} = g'(x)$ 

to find the unknown derivative

$$\frac{dy}{dx} = \frac{d}{dx} \Big[ f(g(x)) \Big]$$

### Theorem (The Chain Rule)

If g is differentiable at the point x and f is differentiable at the point g(x) then the composition  $f \circ g$  is differentiable at the point x. Moreover, if

2

$$y = f(g(x))$$
 and  $u = g(x)$ 

then y = f(u) and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

**Example** Find  $\frac{dy}{dx}$  if  $y = 4\cos(x^3)$ 

### **Solution**

Let  $u = x^3$  so that  $y = 4\cos u$ , then by chain rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{d}{du} \left[ 4\cos u \right] \cdot \frac{d}{dx} \left[ x^3 \right] = \left( -4\sin u \right) \cdot \left( 3x^2 \right) = -12x^2 \sin x^3$$

In general, if f(g(x)) is a composite function in which the inside function g and the outside function f are differentiable, then

$$\frac{d}{dx} \left[ f(g(x)) \right] = f'(g(x)) \cdot g'(x)$$

**Example** Find the derivative of  $\left(\frac{x+2}{x-3}\right)^3$ 

### **Solution**

By using the chain rule, we obtain

$$\frac{d}{dx} \left(\frac{x+2}{x-3}\right)^3 = 3 \left(\frac{x+2}{x-3}\right)^2 \cdot \frac{d}{dx} \left(\frac{x+2}{x-3}\right)$$

Let calculate 
$$\frac{d}{dx} \left( \frac{x+2}{x-3} \right)$$

$$\frac{d}{dx}\left(\frac{x+2}{x-3}\right) = \frac{(x-3)\frac{d}{dx}(x+2) - (x+2)\frac{d}{dx}(x-3)}{(x-3)^2} = \frac{(x-3)\cdot 1 - (x+2)\cdot 1}{(x-3)^2} = -\frac{5}{(x-3)^2}$$

Hence

$$\frac{d}{dx} \left( \frac{x+2}{x-3} \right)^3 = 3 \left( \frac{x+2}{x-3} \right)^2 \cdot \frac{d}{dx} \left( \frac{x+2}{x-3} \right) = 3 \left( \frac{x+2}{x-3} \right)^2 \cdot \left( -\frac{5}{\left(x-3\right)^2} \right) = -15 \frac{\left(x+2\right)^2}{\left(x-3\right)^3}$$

### 4 Derivatives of Trigonometric and Hyperbolic Functions

1 
$$\frac{d}{dx}(\sin x) = \cos x$$
 5  $\frac{d}{dx}(\sec x) = \sec x \tan x$ 

2 
$$\frac{d}{dx}(\cos x) = -\sin x$$
 6  $\frac{d}{dx}(\csc x) = -\csc x \cot x$ 

3 
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
 7  $\frac{d}{dx}(\cosh x) = \sinh x$ 

4 
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
 8  $\frac{d}{dx}(\sinh x) = \cosh x$ 

**N.B:** 
$$\tan x = \frac{\sin x}{\cos x}$$
  $\cot x = \frac{\cos x}{\sin x}$   $\sec x = \frac{1}{\cos x}$  and  $\csc x = \frac{1}{\sin x}$ 

Proof

Recall that  $\lim_{h\to 0} \frac{\sinh}{h} = 1$  and  $\lim_{h\to 0} \frac{1-\cos h}{h} = 0$ 

From the definition of a derivative,

<sup>&</sup>lt;sup>1</sup> sec: secant and csc: cosecant

$$\frac{d}{dx}\left[\sin x\right] = \lim_{h \to 0} \frac{\sin\left(x+h\right) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \left[\sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right)\right] = \lim_{h \to 0} \left[\cos x \left(\frac{\sin h}{h}\right) - \sin x \left(\frac{1 - \cos h}{h}\right)\right]$$

Since  $\lim_{h\to 0} (\sin x) = \sin x$  and  $\lim_{h\to 0} (\cos x) = \cos x$ ,

$$\frac{d}{dx}\left[\sin x\right] = \cos x \cdot \lim_{h \to 0} \left(\frac{\sin h}{h}\right) - \sin x \cdot \lim_{h \to 0} \left(\frac{1 - \cos h}{h}\right) = \cos x \cdot (1) - \sin x \cdot (0) = \cos x$$

Thus, we have shown that

$$\frac{d}{dx}[\sin x] = \cos x$$

The derivative of cos x is obtained similarly:

$$\frac{d}{dx}\left[\cos x\right] = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \left[\cos x \cdot \left(\frac{\cos h - 1}{h}\right) - \sin x \cdot \left(\frac{\sin h}{h}\right)\right]$$

$$= -\cos x \cdot \lim_{h \to 0} \left(\frac{1 - \cos h}{h}\right) - \sin x \cdot \lim_{h \to 0} \left(\frac{\sin h}{h}\right)$$

$$= (-\cos x)(0) - (\sin x)(1) = -\sin x$$

Thus, we have shown that

$$\frac{d}{dx}[\cos x] = -\sin x$$

**Example** Find f'(x) if  $f(x) = x^2 \tan x$ 

**Solution** 

$$f'(x) = x^{2} \cdot \frac{d}{dx} \left[ \tan x \right] + \tan x \cdot \frac{d}{dx} \left[ x^{2} \right]$$
$$= x^{2} \sec^{2} x + 2x \tan x$$

**Example** Find dy/dx if  $y = \frac{\sin x}{1 + \cos x}$ 

**Solution** 

$$\frac{dy}{dx} = \frac{(1+\cos x) \cdot \frac{d}{dx} [\sin x] - \sin x \cdot \frac{d}{dx} [1+\cos x]}{(1+\cos x)^2} = \frac{(1+\cos x)(\cos x) - (\sin x)(-\sin x)}{(1+\cos x)^2}$$
$$= \frac{\cos x + \cos^2 x + \sin^2 x}{(1+\cos x)^2} = \frac{\cos x + 1}{(1+\cos x)^2} = \frac{1}{1+\cos x}$$

### 5 Derivatives of Functions not Represented Explicitly

### 5-1 Implicit differentiation

Consider the equation xy = 1. One way to obtain dy/dx is to write the equation as  $y = \frac{1}{x}$ 

from which it follows that

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{x} \right) = -\frac{1}{x^2}$$

Another way is to differentiate both sides

$$\frac{d}{dx}(xy) = \frac{d}{dx}(1)$$

$$x\frac{d}{dx}(y) + y\frac{d}{dx}(x) = 0$$

$$x\frac{dy}{dx} + y = 0$$

$$\frac{dy}{dx} = -\frac{y}{x}$$

$$ce \ y = \frac{1}{x}, \ y' = \frac{dy}{dx} = -\frac{1}{x^2}$$

Since 
$$y = \frac{1}{x}$$
,  $y' = \frac{dy}{dx} = -\frac{1}{x^2}$ 

This second method of obtaining derivatives is called *implicit differentiation*.

**Example** By implicit differentiation find dy/dx if  $5y^2 + \sin y = x^2$ 

#### **Solution**

Differentiating both sides with respect to x and treating and treating y as a differentiable function of x, we obtain.

$$\frac{d}{dx}(5y^2 + \sin y) = \frac{d}{dx}(x^2)$$

$$5\frac{d}{dx}(y^2) + \frac{d}{dx}(\sin y) = 2x$$

$$5\left(2y\frac{dy}{dx}\right) + (\cos y)\frac{dy}{dx} = 2x$$

$$10y\frac{dy}{dx} + \cos y\frac{dy}{dx} = 2x$$

$$\frac{dy}{dx} = \frac{2x}{10y + \cos y}$$

**Example** Find 
$$\frac{dy}{dx}$$
 if  $7x^4 + x^3y + x = 4$ 

**Example** Find 
$$\frac{d^2y}{dx^2}$$
 if  $4x^2 - 2y^2 = 9$ 

### **5-2 Derivative of the Inverse Functions**

Let y = f(x) be a function whose inverse is  $x = f^{-1}(y)$ . Then  $\frac{dy}{dx} = \frac{1}{dx}$ 

**Example** Find the derivative of  $y = \arcsin x$ .

### **Solution**

We have  $y = \arcsin x \Leftrightarrow x = \sin y$  and hence  $\frac{dx}{dy} = \frac{d}{dy} (\sin y) = \cos y$ . Then

$$\frac{dy}{dx} = \frac{d}{dx} \left(\arcsin x\right) = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos\left(\arcsin x\right)} = \frac{1}{\sqrt{1 - x^2}}$$

**Example** Find the derivative of  $y = \arccos x$  and  $y = \arctan x$ .

### 5-3 Derivatives of functions Represented Parametrically

If a function y is related to a variable x by means of a parameter t

Lecture Note

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

Then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

or, in other notation,

$$y_x' = \frac{y_t'}{x_*'}$$

**Example** Find 
$$\frac{dy}{dx}$$
 if  $\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$ 

### **Solution**

We find 
$$\frac{dx}{dt} = -a \sin t$$
,  $\frac{dy}{dt} = a \cos t$ . Hence  $\frac{dy}{dx} = -\frac{a \cos t}{a \sin t} = -\cot t$ .

**Example** Find 
$$\frac{dy}{dx}$$
 if 
$$\begin{cases} x = 2t - 1 \\ y = t^3 \end{cases}$$

### 6 Logarithmic Differentiation

Taking the derivatives of some complicated functions can be simplified by using logarithms. This is called **logarithmic differentiation**.

**Example** Differentiate the function 
$$y = \frac{x^5}{(1-10x)\sqrt{x^2+2}}$$

### **Solution**

Taking logarithms of both sides we obtain

$$\ln y = \ln \frac{x^5}{(1 - 10x)\sqrt{x^2 + 2}}$$

$$\ln y = \ln x^5 - \ln (1 - 10x) - \ln \sqrt{x^2 + 2}$$

Differentiate both sides with respect to x to get

$$\frac{y'}{y} = \frac{5x^4}{x^5} + \frac{10}{1 - 10x} - \frac{\left(\sqrt{x^2 + 2}\right)'}{\sqrt{x^2 + 2}}$$
$$\frac{y'}{y} = \frac{5x^4}{x^5} + \frac{10}{1 - 10x} - \frac{x}{x^2 + 2}$$

Soving for y'

$$y' = y \left( \frac{5x^4}{x^5} + \frac{10}{1 - 10x} - \frac{x}{x^2 + 2} \right)$$
$$= \frac{x^5}{(1 - 10x)\sqrt{x^2 + 2}} \left( \frac{5x^4}{x^5} + \frac{10}{1 - 10x} - \frac{x}{x^2 + 2} \right)$$

We can also use logarithmic differentiation to differentiate functions in the form

$$y = \left[ u(x) \right]^{v(x)}$$

**Example** Differentiate  $y = x^x$ ,  $y = x^{x^x}$ ,  $y = a^x$  where a is a constant.

Differentiation

### 7 Higher Order Derivatives

### 7-1 Definition of Higher Order derivatives

A derivative of the second order, or the second derivative, of a function y = f(x) is the derivative of its derivative; that is

$$y'' = (y')'$$

The second derivative may be denoted as

$$y''$$
, or  $\frac{d^2y}{d^2x}$ , or  $f''(x)$ 

Generally, the nth derivative of a function y = f(x) is the derivative of the derivative of order (n-1). For the nth derivative we use the notation

$$y^{(n)}$$
, or  $\frac{d^n y}{dx^n}$ , or  $f^{(n)}(x)$ 

**Example** Find the second derivative of the function  $y = \ln(1-x)$ 

### **Solution**

$$y' = \frac{-1}{1-x}, y'' = \left(\frac{-1}{1-x}\right)' = \frac{1}{\left(1-x\right)^2}$$

### 7-2 Higher-Order Derivatives of functions represented Parametrically

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

then the derivative  $y' = \frac{dy}{dx}$ ,  $y'' = \frac{d^2y}{dx^2}$ ,... can successively be calculated by the formulas

$$y'_{x} = \frac{y'_{t}}{x'_{t}}, y''_{xx} = (y'_{x})'_{x} = \frac{(y'_{x})'_{t}}{x'_{t}}$$
 and so forth.

For the second derivative we have the formula

$$y_{xx}'' = \frac{x_t' y_{tt}'' - x_{tt}'' y_t'}{(x_t')^3}$$

**Example** Find 
$$y''$$
 if  $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ . Answer:  $-\frac{b}{a^2 \sin^3 t}$ .

### 8 Differential

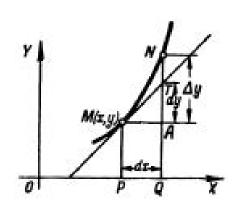
### 8-1 First-Order Differential

The differential of a function y = f(x) is the principal part of it increment, which is linear relative to the increment  $\Delta x = dx$  of the independent variable x. The differential of a function is equal to the product of it derivative by the differential of the independent variable

$$dy = y'dx$$

whence

$$y' = \frac{dy}{dx}$$



### **8-2 Properties of Differential**

- 1 dc = 0, c is a constant
- $2 \quad d(cu) = cdu$
- 3  $d(u \pm v) = du \pm dv$
- 4 d(uv) = udv + vdu
- $5 \qquad d\left(\frac{u}{v}\right) = \frac{vdu udv}{v^2} \quad v \neq 0$
- 6 df(u) = f'(u)du

### 8-3 Approximation by Differential

For the function y = f(x),  $\Delta y \approx dy$ ; that is  $f(x + \Delta x) - f(x) \approx f'(x) \Delta x$  whence  $f(x + \Delta x) \approx f'(x) \Delta x + f(x)$ 

### 8-4 Higher-Order Differential

If y = f(x) and x is the independent variable, then

$$d^{2}y = y''(dx)^{2}$$

$$d^{3}y = y'''(dx)^{3}$$
...
$$d^{n}y = y^{(n)}(dx)^{n}$$

### 9 Theorems Relative to Derivative

### 9-1 Rolle's Theorem

If f(x) is continuous on the interval [a,b], differentiable at every interior point of the interval and f(a) = f(b), then there exist at least a point  $x = \xi$ ,  $a < \xi < b$  where  $f'(\xi) = 0$ .

If f is continuous on the interval [a,b], then it attains on the interval a relative maximum value M and a minimum value m. If m=M, then f is constant, say, f(x)=m, implying that  $f'(\xi)=0$ . If  $m\neq M$ , we suppose that M>0 and f attains the maximum value M at  $x=\xi$ , that is  $f(\xi)=M$ ,  $\xi\neq a,b$ . If  $f(\xi)$  is the upper bound of f, then  $f(\xi+h)-f(\xi)\leq 0$  and therefore,

$$\frac{f(\xi+h)-f(\xi)}{h} \le 0, \quad h > 0 \Rightarrow \lim_{h \to 0} \frac{f(\xi+h)-f(\xi)}{h} \le 0$$

$$\frac{f(\xi+h)-f(\xi)}{h} \ge 0, \quad h < 0 \Rightarrow \lim_{h \to 0} \frac{f(\xi+h)-f(\xi)}{h} \ge 0$$

Hence  $f'(\xi) = 0$ .

**Example** Consider the function  $f(x) = \sin x$  The function is both continuous and differentiable everywhere, hence it is continuous on  $[0,2\pi]$  and differentiable on (a,b). Moreover

$$f(0) = \sin 0 = 0, \ f(2\pi) = \sin 2\pi = 0$$

so that f satisfies the hypotheses of Rolle's theorem on the interval  $[0,2\pi]$ . Since  $f'(c) = \cos c$ . Rolle's theorem guarantees that there is at least one point in  $(0,2\pi)$  such that  $\cos c = 0$ 

which yields two values for c, namely  $c_1 = \pi/2$  and  $c_2 = 3\pi/2$ 

**Example** Verify that the hypotheses of Rolle's theorem is satisfied on the given interval and find all values of *c* that satisfy the conclusion of the theorem

$$f(x) = \frac{x^2 - 1}{x - 2}, [-1, 1]$$

### **Solution**

On the interval  $\begin{bmatrix} -1,1 \end{bmatrix}$  f(x) is continuous and it is differentiable on  $\begin{pmatrix} -1,1 \end{pmatrix}$ 

$$f'(x) = \frac{(x^2 - 1)'(x - 2) - (x - 2)'(x^2 - 1)}{(x - 2)^2} = \frac{2x(x - 2) - (x^2 - 1)}{(x - 2)^2} = \frac{2x^2 - 4x - x^2 + 1}{(x - 2)^2}$$
$$f'(\xi) = 0$$
$$\xi^2 - 4\xi + 1 = 0$$

which has the roots  $\xi_1 = 2 - \sqrt{3}$ ,  $\xi_2 = 2 + \sqrt{3}$ 

Hence  $\xi = 2 - \sqrt{3}$  satisfies the theorem.

### 9-2 Mean-Value Theorem

Let f be differentiable on (a,b) and continuous on [a,b]. Then there is at least one point  $\xi$  in (a,b) such that  $f(b)-f(a)=f'(\xi)(b-a)$ .

Proof

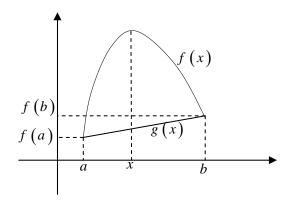
The slope of 
$$g(x)$$
 is  $Q = \frac{f(b) - f(a)}{b - a}$ 

since g(x) passes through the point (a, f(a)), then the equation of the line is defined by

$$g(x)-f(a)=Q(x-a)$$

then 
$$g(x) = f(a) + Q(x-a)$$
.

Let



$$F(x) = f(x) - g(x) = f(x) - [f(a) + Q(x-a)] = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Hence we obtain the function F(x) which is continuous on [a,b], differentiable on (a,b) and F(a) = F(b) = 0. By Rolle's Theorem,  $\exists \xi \in (a,b)$  such that  $F'(\xi) = 0$ .

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a)$$

$$F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a}$$

then 
$$f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$$
. Hence  $f(b) - f(a) = f'(\xi)(b - a)$ 

**Example** Let  $f(x) = x^3 + 1$ . Show that f is satisfies the hypotheses of the Mean-Value Theorem on the interval [1,2] and find all values of  $\xi$  in this interval whose existence is guaranteed by the theorem.

### **Solution**

Because f(x) is a polynomial, f is continuous and differentiable everywhere, hence is continuous on [1,2] and differentiable on (1,2). Thus, the hypotheses of the Mean-Value Theorem are satisfied with a=1 and b=2. But

$$f(a) = f(1) = 2$$
,  $f(b) = f(2) = 9$   
 $f'(x) = 3x^2$ ,  $f'(c) = 3c^2$ 

so that the equation

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

 $\Leftrightarrow$  3 $\xi^2 = 7$  which has two solutions

$$\xi = \sqrt{7/3}$$
 and  $\xi = -\sqrt{7/3}$ 

So  $\xi = \sqrt{7/3}$  is the number whose existence is guaranteed by the Mean-Value Theorem.

### 9-3 Cauchy's Theorem

Let f(x) and g(x) be continuous and differentiable function over the interval [a,b] and  $g'(x) \neq 0$  over [a,b]. Then there exists an interior point  $x = \xi$  to the interval [a,b] such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Proof

Let define 
$$Q$$
 by  $Q = \frac{f(b) - f(a)}{g(b) - g(a)}$ 

Notice that  $g(b) - g(a) \neq 0$  since if not, g(b) = g(a) then by Rolle's Theorem, g'(x) = 0 at a point interior to [a,b]. It contradicts to the condition of the theorem.

Let form a function F(x) = f(x) - f(a) - Q[g(x) - g(a)], which satisfies the condition of the Rolle's Theorem, then there exists a number  $x = \xi, a < \xi < b$ , such that  $F'(\xi) = 0$ . Since

$$F'(x) = f'(x) - Qg'(x), \text{ then } F'(\xi) = f'(\xi) - Qg'(\xi) = 0 \implies Q = \frac{f'(\xi)}{g'(\xi)}. \text{ Hence}$$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)} \blacksquare$$

### 9-4 L' Hopital's Rule

Consider the function F(x) = f(x)/g(x), where both f(x) = 0 and g(x) = 0 when x = a. Then, for any x > a there exists a value  $\xi$ ,  $a < \xi < x$  such that

$$\frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

or  $\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$ 

Now as  $x \to a, \xi \to a$ , therefore when the limit exists

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\xi \to a} \frac{f'(x)}{g'(x)}$$

This result is known as I' Hopital's Rule and is usually written as

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

**Example** Evaluate  $\lim_{x\to 0} \frac{\cos x - 1}{x^2 - x}$ 

L'Hopital's Rule can still be applied in cases where  $f(x) \to \infty$  and  $g(x) \to \infty$  when  $x \to a$ , simply by writing

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{1/f(x)}{1/g(x)}$$

Now  $1/f(x) \rightarrow 0$  and  $1/g(x) \rightarrow 0$  as  $x \rightarrow a$  and the rule applies. Therefore,

$$L = \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{1/g(x)}{1/f(x)} = \lim_{x \to a} \left| \frac{-g'(x)}{\left[g(x)\right]^2} \middle/ \frac{-f'(x)}{\left[f(x)\right]^2} \right|$$
$$= \lim_{x \to a} \left[ \frac{f(x)}{g(x)} \right]^2 \left[ \frac{g'(x)}{f'(x)} \right] = L^2 \lim_{x \to a} \frac{g'(x)}{f'(x)}$$

Hence

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Similarly, if f(x) and g(x) both tend to zero, or both tend to infinity as x tend to infinity

the rule applies. By writing x = 1/u

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{u \to 0} \frac{f(1/u)}{g(1/u)} = \lim_{u \to 0} \left\{ -\frac{1}{u^2} f'\left(\frac{1}{u}\right) \middle/ -\frac{1}{u^2} g'(1/u) \right\}$$
$$= \lim_{u \to 0} \left\{ f'(1/u) \middle/ g'(1/u) \right\} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

If, after one application of l' Hopital's rule the limit is still indeterminate, the process can be repeated until a determinate form is reached.

### **Example** Evaluate

(i) 
$$\lim_{x \to 0} \frac{\sin^2 x}{x^3 + 2x^2}$$
 (ans: 1/2) (ii)  $\lim_{x \to \infty} x^3 e^{-x^2}$  (ans: 0)

### 9-5 Taylor's Theorem for Functions of One Variable

Suppose that the function y = f(x) has (n+1)th order derivative in the neighborhood of the point x = a. We will find the polynomial of order n at most such that

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$$

The sought-for polynomial is of the form

$$P_n(x) = C_0 + C_1(x-a) + C_2(x-a)^2 + C_3(x-a)^3 + \dots + C_n(x-a)^n$$

Let calculate the nth derivative of  $P_n(x)$ 

$$P'_{n}(x) = C_{1} + 2C_{2}(x-a) + 3C_{3}(x-a)^{2} + \dots + nC_{n}(x-a)^{n-1}$$

$$P''_{n}(x) = 2C_{2} + 6C_{3}(x-a) + \dots + n(n-1)C_{n}(x-a)^{n-2}$$

$$P'''_{n}(x) = 6C_{3} + 4 \cdot 3 \cdot 2C_{4}(x-a) + \dots + n(n-1)(n-2)C_{n}(x-a)^{n-3}$$

$$\vdots$$

$$P_n^{(n)}(x) = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1\cdot C_n$$

Then we can obtain

$$f(a) = C_0$$

$$f'(a) = C_1$$

$$f''(a) = 2 \cdot 1 \cdot C_2$$

$$\vdots$$

$$f^{(n)}(a) = n(n-1)(n-2) \cdots 2 \cdot 1 \cdot C_n$$

and hence

$$C_0 = f(a)$$

$$C_1 = f'(a)$$

$$C_2 = \frac{1}{1 \cdot 2} f''(a)$$

$$C_3 = \frac{1}{1 \cdot 2 \cdot 3} f'''(a)$$

$$\vdots$$

$$C_n = \frac{1}{1} f^{(n)}(a)$$

Therefore, we obtain

$$P_n(x) = f(a) + \frac{x-a}{1} f'(a) + \frac{(x-a)^2}{1 \cdot 2} f''(a) + \frac{(x-a)^3}{1 \cdot 2 \cdot 3} f'''(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a)$$

Let  $R_n(x)$  be the difference between the function f(x) and the polynomial  $P_n(x)$ ; that is,

$$R_n(x) = f(x) - P_n(x)$$

Then

$$f(x) = P_n(x) + R_n(x)$$

$$f(x) = f(a) + \frac{x-a}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + R_n(x)$$

 $R_n(x)$  is called the *remainder* and is defined by

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!}Q(x)$$

where Q(x) is the function to be defined.

Now we have

$$f(x) = f(a) + \frac{x-a}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + \frac{(x-a)^{n+1}}{(n+1)!}Q(x)$$

we will find Q(x).

Consider an auxiliary function F(t), a < t < x which is define as

$$F(t) = f(x) - f(t) - \frac{x - t}{1} f'(t) - \frac{(x - t)^{2}}{2!} f''(t) - \dots - \frac{(x - t)^{n}}{n!} f^{(n)}(t) - \frac{(x - t)^{n+1}}{(n+1)!} Q$$

By computing F'(t) and simplifying, we obtain

$$F'(t) = -f'(t) + f'(t) - \frac{x - t}{1} f''(t) + \frac{2(x - t)}{2!} f''(t) - \frac{(x - t)^{2}}{2!} f'''(t)$$

$$\cdots - \frac{(x - t)^{n - 1}}{(n - 1)!} f^{(n)}(t) + \frac{n(n - t)^{n - 1}}{n!} f^{(n)}(t) - \frac{(x - t)^{n}}{n!} f^{(n + 1)}(t) + \frac{(n + 1)(x - t)^{n}}{(n + 1)!} Q$$

$$F'(t) = -\frac{(x - t)^{n}}{n!} f^{(n + 1)}(t) + \frac{(x - t)^{n}}{n!} Q$$

We can see that the function F(t) satisfies the condition of Rolle's Theorem, then there exists a number  $\xi$ ,  $a < \xi < x$  such that  $F'(\xi) = 0$ . Then

$$-\frac{\left(x-\xi\right)^{n}}{n!}f^{(n+1)}\left(\xi\right) + \frac{\left(x-\xi\right)^{n}}{n!}Q = 0$$

$$Q = f^{(n+1)}\left(\xi\right)$$

and thus,

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

which is called *Lagrange formula for the remainder*. Since  $\xi$  is between x and a we can write it in the form

$$\xi = a + \theta(x - a)$$

where  $\theta$  is between 0 and 1; that is  $0 < \theta < 1$ . Then the remainder can be written as

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)} \left[ a + \theta(x-a) \right]$$

The formula

$$f(x) = f(a) + \frac{x-a}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \frac{(x-a)^3}{3!} f'''(a) + \cdots$$
$$+ \frac{(x-a)^n}{n!} f^{(n)}(a) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)} \left[ a + \theta(x-a) \right], 0 < \theta < 1$$

is called *Taylor Formula* for the function f(x). If, in this formula, a = 0 we obtain

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x)$$

which is known as Maclaurin Formula.

**Example:** Use Macluarin Formula to expand the functions  $e^x$ ,  $\sin x$ , and  $\cos x$ .

### **Exercises**

Exercise 1 through 4, use definition of derivative

- 1 Given  $y = f(x) = x^2 + 5x 8$ , find  $\Delta y$  and  $\Delta y/\Delta x$  as x changes (a) from  $x_0 = 1$  to  $x_1 = x_0 + \Delta x = 1.2$  (b) and  $x_0 = 1$  to  $x_1 = 0.8$ .
- 2 Find  $\Delta y/\Delta x$ , given  $y = x^3 x^2 4$ . Find also the value of  $\Delta y/\Delta x$  when (a) x = 4, (b) x = 0, (c) x = -1.
- 3 Find the derivative of  $y = f(x) = \frac{1}{x-2}$  at x = 1 and x = 3.
- 4 Find the derivative of  $f(x) = \frac{2x-3}{3x+4}$

5 Differentiate

(a) 
$$y = \frac{3-2x}{3+2x}$$
, (b)  $y = \frac{x^2}{\sqrt{4-x^2}}$ 

**6** Find 
$$\frac{dy}{dx}$$
, given  $x = y\sqrt{1 - y^2}$ 

### Find the derivative of the following functions

7 
$$f(x) = x \cot x$$

8 
$$y = \tan x - \cot x$$

$$9 \quad f(x) = x \sin^{-1} x$$

$$10 \quad y = \frac{\sin x + \cos x}{\sin x - \cos x}$$

11 
$$y = \frac{(1+x^2)\tan^{-1}x - x}{2}$$

12 
$$y = 2t \sin t - (t^2 - 2) \cos t$$

13 
$$f(x) = \arctan x + \operatorname{arc} \cot x$$

**14** 
$$y = x^7 e^x$$

**15** 
$$y = \frac{x^2}{\ln x}$$

16 
$$y = e^x \arcsin x$$

17 
$$y = x \sinh x$$

18 
$$y = \tan^{-1} x - \tanh^{-1} x$$

$$19 \quad y = \frac{x^2}{\cosh x}$$

**20** 
$$y = \sin^{-1} x \sinh^{-1} x$$

$$21 \quad y = \tanh x - x$$

22 
$$y = \frac{\cosh^{-1} x}{x}$$

### Derivative of composite function

**23** 
$$f(x) = (1+3x-5x^2)^{30}$$

**24** 
$$y = \sqrt{1 - x^2}$$

**25** 
$$f(x) = (3 - 2\sin x)^4$$

**26** 
$$y = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x$$

$$27 \quad y = \sqrt{\cot x}$$

$$28 \quad y = \sqrt[3]{\sin^2 x} + \frac{1}{\cos^3 x}$$

**29** 
$$v = \csc^2 x + \sec^2 x$$

**30** 
$$y = \sqrt{1 + \sin^{-1} x}$$

31 
$$y = \frac{1}{\tan^{-1} x}$$

32 
$$y = \frac{1}{3\cos^3 x} - \frac{1}{\cos x}$$

33 
$$y = \sin\left(x^2 - 5x + 1\right) + \tan\frac{\alpha}{x}$$

**34** 
$$y = \frac{1 + \cos 2x}{1 - \cos 2x}$$

35 
$$f(t) = \sin t \sin(t + \phi)$$

36 
$$y = \sin^{-1} 2x$$

37 
$$y = \sin^{-1} \frac{1}{x^2}$$

38 
$$y = \cos^{-1} e^x$$

**39** 
$$y = \ln(2x + 7)$$

**40** 
$$y = \ln^2 x - \ln(\ln x)$$

**41** 
$$y = \tan^{-1}(\ln x) + \ln(\tan^{-1} x)$$

**42** 
$$y = \sqrt{\ln x + 1} + \ln(\sqrt{x} + 1)$$

$$43 \quad y = (a+x)\sqrt{a-x}$$

**44** 
$$y = \ln(\sqrt{1+e^x} - 1) - \ln(\sqrt{1+e^x} + 1)$$

$$45 \quad y = \sin^2\left(t^3\right)$$

$$46 \quad y = \arcsin x^2 + \arccos x^2$$

**47** 
$$y = \sin^{-1} \frac{x^2 - 1}{x^2}$$

$$48 \quad y = \frac{\arccos x}{\sqrt{1 - x^2}}$$

$$49 \quad y = \arcsin \frac{x}{\sqrt{1+x^2}}$$

$$50 \quad y = \sqrt{a^2 - x^2} + a \arcsin \frac{x}{a}$$

$$51 \quad y = x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a}$$

**52** 
$$y = \ln\left(x + \sqrt{a^2 + x^2}\right)$$

**53** 
$$y = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\ln\left(x + \sqrt{x^2 - a^2}\right)$$

**54** 
$$f(x) = \frac{x \arcsin x}{\sqrt{1-x^2}} + \ln \sqrt{1-x^2}$$

55 
$$y = \cosh^{-1} \ln x$$

**56** 
$$y = \tanh^3 2x$$

57 Given the function 
$$f(x) = e^{-x}$$
, determine  $f(0) + xf'(0)$ .

58 Given the function 
$$f(x) = \sqrt{1+x}$$
, calculate the expression  $f(3) + (x-3)f'(3)$ 

59 Given 
$$f(x) = \tan x$$
,  $g(x) = \ln(1-x)$ , calculate  $\frac{f'(0)}{g'(0)}$ 

**60** Show that the function 
$$y = xe^{-x}$$
 satisfies the equation  $xy' = (1-x)y$ 

61 Show that the function 
$$y = xe^{-\frac{x^2}{2}}$$
, satisfies the equation  $xy' = (1 - x^2)y$ 

62 Show that the function 
$$y = \frac{1}{1 + x + \ln x}$$
, satisfies the equation  $xy' = y(y \ln x - 1)$ 

Logarithmic Differentiation

**63** 
$$y = (x+1)(2x+1)(3x+1)$$

$$68 y = x^3$$

**64** 
$$y = \sqrt[x]{x}$$

$$v = x^{x^2}$$

**65** 
$$y = \frac{(x+1)^2}{(x+1)^2(x+3)^4}$$

$$70 y = x^{\sin x}$$

$$(x+1)^{2} (x-1)^{2}$$
**66** 
$$y = x^{\sqrt{x}}$$

$$71 \quad y = \left(1 + \frac{1}{x}\right)^x$$

$$\int x(x-1)$$

72 
$$y = (\arctan x)^x$$

$$\mathbf{67} \quad y = \sqrt{\frac{x(x-1)}{x-2}}$$

y is the function of x and determined in parametric form. Find  $y' = \frac{dy}{dx}$ 

$$\begin{cases}
x = 2t - 1 \\
x = t^3
\end{cases}$$

$$\begin{cases} x = \sqrt{t} \\ y = \sqrt[3]{t} \end{cases}$$

73 
$$\begin{cases} x = 2t - 1 \\ x = t^3 \end{cases}$$
74 
$$\begin{cases} x = a\cos^2 t \\ y = a\sin^2 t \end{cases}$$

78 
$$\begin{cases} x = \sqrt{t} \\ y = \sqrt[3]{t} \end{cases}$$
80 
$$\begin{cases} x = \arccos \frac{1}{\sqrt{1+t^2}} \\ y = \arcsin \frac{t}{\sqrt{1+t^2}} \end{cases}$$
81 
$$\begin{cases} x = e^{-t} \\ y = e^{2t} \end{cases}$$

$$\begin{cases}
x = \frac{1}{t+1} \\
y = \left(\frac{t}{t+1}\right)
\end{cases}$$

$$81 \quad \begin{cases} x = e^{-t} \\ y = e^{2t} \end{cases}$$

$$y = a \sin^{2} t$$

$$\begin{cases} x = \frac{1}{t+1} \\ y = \left(\frac{t}{t+1}\right)^{2} \end{cases}$$

$$\begin{cases} x = \frac{2at}{1+t^{2}} \\ y = \frac{a(1-t^{2})}{1+t^{2}} \end{cases}$$

$$\begin{cases} x - \frac{1 + t^2}{1 + t^2} \\ y = \frac{a(1 - t^2)}{1 + t^2} \end{cases}$$

82 Compute 
$$\frac{dy}{dx}$$
 for  $t = \frac{\pi}{2}$ , if 
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$

83 Show that the function y given in the parametric form by the equations

$$\begin{cases} x = 2t + 3t^2 \\ y = t^2 + 2t^3 \end{cases}$$

satisfies the equation

$$y = \left(\frac{dy}{dx}\right)^2 + 2\left(\frac{dy}{dx}\right)^3$$

Find the derivative  $y' = \frac{dy}{dx}$  of the implicit function y

**84** 
$$a\cos^2(x+y) = b$$

**89** 
$$e^y = x + y$$

**85** 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

**90** 
$$\ln x + e^{-\frac{y}{x}} = c$$

**86** 
$$\tan y = xy$$

91 
$$\sqrt{x^2 + y^2} = c \arctan \frac{y}{x}$$

87 
$$xy = \arctan \frac{x}{y}$$

**92** 
$$y^x = x^2$$

**88** 
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

Find the derivatives y' of specified functions y at the indicated points

**93** 
$$(x+y)^3 = 27(x-y)$$
 for  $x=2$  and  $y=1$ 

for 
$$x = 2$$
 and  $y = 1$ 

**94** 
$$ye^y + e^{x+1}$$

for 
$$x = 0$$
 and  $y = 1$ 

**95** 
$$y^2 = x + \ln \frac{y}{x}$$

for 
$$x = 1$$
 and  $y = 1$ 

**96** Find  $y^{(6)}$  of the function  $y = \sin 2x$ 

97 Show that the function  $y = e^{-x} \cos x$  satisfied the differential equation  $y^{(4)} + 4y = 0$ 

**98** Find the nth derivatives of the functions

**a)** 
$$y = \frac{1}{1-x}$$
 **b)**  $y = \sqrt{x}$  **c)**  $y = \frac{1}{1+x}$  **d)**  $y = \ln(1+x)$  **e)**  $y = \frac{1+x}{1-x}$ 

**b**) 
$$y = \sqrt{x}$$

**c**) 
$$y = \frac{1}{1+x}$$

$$\mathbf{d}) \ y = \ln \left( 1 + x \right)$$

**e)** 
$$y = \frac{1+x}{1-x}$$

**f**) 
$$y = \ln(1+x)$$
 **g**)  $y = xe^x$ 

**99** In the following problem find  $\frac{d^2y}{dx^2}$ 

$$\mathbf{a)} \begin{cases} x = \ln t \\ y = t^3 \end{cases}$$

a) 
$$\begin{cases} x = \ln t \\ y = t^3 \end{cases}$$
 b) 
$$\begin{cases} x = \arctan t \\ y = \ln(1 + t^2) \end{cases}$$
 c) 
$$\begin{cases} x = \arcsin t \\ y = \sqrt{1 - t^2} \end{cases}$$
 d) 
$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$$

$$\mathbf{c}) \begin{cases} x = \arcsin t \\ y = \sqrt{1 - t^2} \end{cases}$$

$$\mathbf{d} \begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$$

$$\mathbf{e}) \begin{cases} x = e^{-at} \\ y = e^{at} \end{cases}$$

$$\mathbf{e}) \begin{cases} x = e^{-at} \\ y = e^{at} \end{cases} \qquad \mathbf{f}) \begin{cases} x = \ln t \\ y = \frac{1}{1-t} \end{cases}$$

**100** Use L'Hopital Rule to find the limits

$$\mathbf{a}) \lim_{x \to 1} \frac{1 - x}{1 - \sin \frac{\pi x}{2}} \qquad \mathbf{b}) \lim_{x \to 0} \frac{\cosh x - 1}{1 - \cos x} \qquad \mathbf{c}) \lim_{x \to 0} \frac{\tan x - \sin x}{x - \sin x} \qquad \mathbf{d}) \lim_{x \to 0} \frac{\frac{\pi}{x}}{\cot \frac{\pi x}{2}}$$

$$\mathbf{b})\lim_{x\to 0}\frac{\cosh x-1}{1-\cos x}$$

$$\mathbf{c)} \lim_{x \to 0} \frac{\tan x - \sin x}{x - \sin x}$$

$$\mathbf{d}) \lim_{x \to 0} \frac{\frac{\pi}{x}}{\cot \frac{\pi x}{2}}$$

e) 
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 5x}$$

$$\mathbf{f})\lim_{x\to 0}\frac{\ln(\sin mx)}{\ln(\sin x)}$$

e) 
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 5x}$$
 f)  $\lim_{x \to 0} \frac{\ln(\sin mx)}{\ln(\sin x)}$  g)  $\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2}$  h)  $\lim_{x \to 1} \ln x \ln(x-1)$ 

$$\mathbf{h})\lim_{x\to 1}\ln x\ln (x-1)$$

i) 
$$\lim_{x \to +\infty} x^{\frac{1}{x}}$$

$$\mathbf{j})\lim_{x\to 1}x^{\frac{1}{1-x}}$$

$$\mathbf{k}$$
)  $\lim_{x \to 0} x^{\sin x}$ 

i) 
$$\lim_{x \to \infty} x^{\frac{1}{x}}$$
 j)  $\lim_{x \to 0} x^{\frac{1}{1-x}}$  k)  $\lim_{x \to 0} x^{\sin x}$  l)  $\lim_{x \to 0} (1-x)^{\cos \frac{\pi x}{2}}$ 

101 Find the approximate values of the followings using the formula

$$f(x+\Delta x) \approx f'(x)\Delta x + f(x)$$

- a)  $\cos 61^{\circ}$
- **b**) ln 0.9
- **c**) tan44°
- **d)** arctan 1.05
- **e**)  $e^{0.2}$

**102** Approximate the functions

**a)** 
$$f(x) = \sqrt{1+x}$$
 for  $x = 0.2$  **b)**  $y = e^{1-x^2}$  for  $x = 1.05$  **c)**  $f(x) = \sqrt[3]{\frac{1-x}{1+x}}$  for  $x = 0.1$ 

- **103**  $u = \sqrt{1 x^2}$ , find  $d^2 u$ . find  $d^2 y$ .
- **104**  $y = \arccos x$ , find  $d^2y$ .
- **105**  $y = \sin x \ln x$ , find  $d^2 y$ .
- **106**  $f(x) = x x^3$  on the intervals  $-1 \le x \le 0$  and  $0 \le x \le 1$  satisfies the Rolle theorem. Find the appropriate values of  $\xi$ .
- **107** Test whether the Mean-Value theorem holds for the function  $f(x) = x x^3$  on the interval [-2,1] and find the appropriate value of  $\xi$ .
- **108 a)** For the function  $f(x) = x^2 + 2$  and  $g(x) = x^3 1$ . Test whether the Cauchy theorem holds on the interval [1,2] and find  $\xi$ .
  - **b**) do the same with respect to  $f(x) = \sin x$  and  $g(x) = \cos x$ .
- 109 Verify the following by Taylor's formula

**a**) 
$$e^x = e^a \left[ 1 + (x-a) + \frac{(x-a)^2}{2!} + \frac{(x-a)^3}{3!} + \cdots \right]$$

**b**) 
$$\sin x = \sin a + (x-a)\cos a - \frac{(x-a)^2}{2!}\sin a - \frac{(x-a)^3}{3!}\cos a + \cdots$$

**c**) 
$$\cos x = \cos a - (x - a)\sin a - \frac{(x - a)^2}{2!}$$

**d**) 
$$\ln(a+x) = \ln a + \frac{x}{a} - \frac{x^2}{2a^2} + \frac{x^3}{3a^3} + \cdots$$

- 110 Expand  $\ln x$  in powers of (x-2) to four terms.
- 111 Expand  $\tan x$  in powers of  $\left(x \frac{\pi}{4}\right)$  to three terms
- 112 Expand  $\sin x$  in powers of  $\left(\frac{\pi}{6} + x\right)$  to four terms.

### Indefinite Integral

### 1 Antiderivative or Indefinite Integral

*Problem:* Given a function f(x), find a function F(x) whose derivative is equal to f(x); that is F'(x) = f(x).

### **Definition1**

We call the function F(x) a antiderivative of the function f(x) on the interval [a,b] if  $F'(x) = f(x), \forall x \in [a,b]$ .

### **Definition2**

We call *indefinite integral* of the function f, which is denoted by  $\int f(x)dx$ , all the expressions of the form F(x)+C where F(x) is a primitive of f(x). Hence, by the definition we have  $\int f(x)dx = F(x)+C$ 

C is called the constant of integration. It is an abitrary constant.

From the definition 2 we obtain

1. If 
$$F'(x) = f(x)$$
, then  $\left(\int f(x)dx\right)' = \left(F(x) + C\right)' = f(x)$   
2.  $d\left(\int f(x)dx\right) = f(x)dx$ 

$$3. \int dF(x) = F(x) + C$$

### 2 Table of Integrals

1. 
$$\int x^r dx = \frac{x^{r+1}}{r+1} + C, r \neq -1$$

$$2. \int \frac{dx}{x} = \ln|x| + C$$

3. 
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C = -\frac{1}{a} \operatorname{arc} \cot \frac{x}{a} + C, (a \neq 0)$$

4. 
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, (a \neq 0)$$

$$5. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C, (a \neq 0)$$

6. 
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

7. 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C, (a > 0)$$

$$8. \int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + c$$

$$9.\int \frac{dx}{\sqrt{x^2-1}} = \cosh^{-1} x + c$$

10. 
$$\int a^x dx = \frac{a^x}{\ln a} + C, (a > 0)$$

$$11. \int e^x dx = e^x + C$$

$$12. \int \sin x dx = -\cos x + C$$

13. 
$$\int \cos x dx = \sin x + C$$

$$14. \int \sinh x dx = \cosh x + c$$

$$15. \int \cosh x = \sinh x + c$$

$$16. \int \frac{dx}{\cosh^2 x} = \tanh x + c$$

17. 
$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

$$18. \int \frac{dx}{\sinh^2 x} = -\coth x + c$$

$$19. \int \frac{dx}{\sin^2 x} = -\cot x + C$$

20. 
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$$

21. 
$$\int \frac{dx}{\cos x} = \ln \left| \tan \left( \frac{x}{2} + \frac{\pi}{4} \right) \right| + C = \ln \left| \tan x + \sec x \right| + C$$

### 3. Some Properties of Indefinite Integrals

Linearity

1. 
$$\iint [f_1(x) + f_2(x) + \dots + f_n(x)] = \iint [f_1(x)] dx + \iint [f_2(x)] dx + \dots + \iint [f_n(x)] dx$$

2. If *a* is a constant, then 
$$\int af(x)dx = a \int f(x)dx$$

Moreover,

3. If 
$$\int f(x)dx = F(x) + C$$
, then  $\int f(ax)dx = \frac{1}{a}F(ax) + C$ 

4. If 
$$\int f(x)dx = F(x) + C$$
, then  $\int f(x+b)dx = F(x+b) + C$ 

5. If 
$$\int f(x)dx = F(x) + C$$
, then  $\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$ 

### Example 1

1. 
$$\int (2x^3 - 3\sin x + 5\sqrt{x})dx$$
 ans:  $\frac{1}{2}x^4 + 3\cos x + \frac{10}{3}x\sqrt{x} + C$ 

2. 
$$\int \left(\frac{3}{\sqrt[3]{x}} + \frac{1}{2\sqrt{x}} + x\sqrt[4]{x}\right) dx$$
 ans:  $\frac{9}{2}\sqrt[3]{x^2} + \sqrt{x} + \frac{4}{9}x^2\sqrt[4]{x} + C$ 

3. 
$$\int \frac{dx}{x+3}$$
 ans:  $\ln |x+3| + C$ 

4. 
$$\int \cos 7x dx \quad \text{ans:} \frac{1}{7} \sin(7x) + c$$

5. 
$$\int \sin(2x-5) dx$$
 ans:  $-\frac{1}{2}\cos(2x-5) + c$ 

### 4 Integration By Substitution

### 4.1 Change of Variable in an Indefinite Integral

Putting  $x = \varphi(t)$  where t is a new variable and  $\varphi$  is a continuously differentiable function, we obtain

$$\int f(x)dx = \int f[\varphi(t)]\varphi'(t)dt \tag{1}$$

The attempt is made to choose the function  $\varphi$  in such a way that the right side of (1) becomes more convenient for integration.

**Example 1** Evaluate the integral  $I = \int x\sqrt{x-1}dx$ 

### **Solution**

Putting  $t = \sqrt{x-1}$ , whence  $x = t^2 + 1$  and dx = 2tdt. Hence,  $\int x\sqrt{x-1}dx = \int (t^2 + 1)t \cdot 2tdt = 2\int (t^4 + t^2)dt = \frac{2}{5}t^5 + \frac{2}{3}t^3$   $= \frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + c$ 

Sometimes substitution of the form  $u = \varphi(x)$  are used. Suppose we succeeded in transorming the integrand f(x)dx to the form

$$f(x)dx = g(u)du$$

where  $u = \varphi(x)$ . If  $\int g(u) du$  is known, that is,

$$\int g(u)du = F(u) + k,$$

then

$$\int f(x) dx = F[\varphi(x)] + c$$

**Example 2** Evaluate (1) 
$$\int \frac{dx}{\sqrt{5x-2}}$$
 (2)  $\int x^2 e^{x^3} dx$ 

### **Solution**

Putting u = 5x - 2; du = 5dx;  $dx = \frac{1}{5}du$ , we obtain (1)

$$\int \frac{dx}{\sqrt{5x-2}} = \frac{1}{5} \int \frac{du}{\sqrt{u}} = \frac{1}{5} \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + c = \frac{2}{5} \sqrt{5x-2} + c$$

### 4.2 Trigonometric Substitutions

- 1) If the integral contains the radical  $\sqrt{a^2 x^2}$ , we put  $x = a \sin t$ ; whence  $\sqrt{a^2 x^2} = a \cos t$
- 2) If the integral contains the radical  $\sqrt{x^2 a^2}$ , we put  $x = a \sec t$  whence  $\sqrt{x^2 a^2} = a \tan t$
- 3) If the integral contains the radical  $\sqrt{x^2 + a^2}$ , we put  $x = a \tan t$  whence  $\sqrt{x^2 + a^2} = a \sec t$

We summarize in the trigonometric substitution in the table below.

| Expression in the integrand | Substitution   | Identities needed                   |
|-----------------------------|----------------|-------------------------------------|
| $\sqrt{a^2-x^2}$            | $x = a\sin t$  | $a^2 - a^2 \sin^2 t = a^2 \cos^2 t$ |
| $\sqrt{a^2+x^2}$            | $x = a \tan t$ | $a^2 + a^2 \tan^2 t = a^2 \sec^2 t$ |
| $\sqrt{x^2-a^2}$            | $x = a \sec t$ | $a^2 \sec^2 t - a^2 = a^2 \tan^2 t$ |

**Example 3** Evaluate 
$$I = \int \frac{dx}{x^2 \sqrt{4 - x^2}}$$

**Solution** 

Let 
$$x = 2\sin\theta$$
,  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \implies dx = 2\cos\theta d\theta$ 

$$I = \int \frac{2\cos\theta d\theta}{4\sin^2\theta \sqrt{4\cos^2\theta}} = \int \frac{2\cos\theta d\theta}{4\sin^2\theta \cdot 2\cos\theta} = \frac{1}{4} \int \frac{d\theta}{\sin^2\theta}$$

$$= \frac{1}{4} \int \csc^2\theta d\theta = -\frac{1}{4}\cot\theta + C = -\frac{1}{4} \cdot \frac{\sqrt{4-x^2}}{x} + C$$

**Example 4** 
$$I = \int \frac{dx}{\sqrt{x^2 + a^2}}$$

**Solution** 

$$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$dx = a \sec^{2} \theta d\theta$$

$$I = \int \frac{a \sec^{2} \theta d\theta}{\sqrt{a^{2} \tan^{2} \theta + a^{2}}}$$

$$= \int \frac{a \sec^{2} \theta d\theta}{a |\sec \theta|} = \int \sec \theta d\theta = \ln |\sec \theta + \tan \theta| + C = \ln \left| \frac{\sqrt{x^{2} + a^{2}}}{a} + \frac{x}{a} \right| + C$$

$$= \ln \left| \sqrt{x^{2} + a^{2}} + x \right| - \ln a + C = \ln \left| \sqrt{x^{2} + a^{2}} + x \right| + C_{1}$$

## **Example 5** Evaluate $\int \frac{\sqrt{x^2 - 25}}{x} dx$

**Solution** 

$$Let x = 5 \sec \theta$$

$$\frac{dx}{d\theta} = \sec \theta \tan \theta$$
 or  $dx = 5\sec \theta \tan \theta d\theta$ 

Thus,

$$\int \frac{\sqrt{x^2 - 25}}{x} dx = \int \frac{\sqrt{25 \sec^2 \theta - 25}}{5 \sec \theta} (5 \sec \theta \tan \theta) d\theta$$

$$= \int \frac{5|\tan \theta|}{5 \sec \theta} (5 \sec \theta \tan \theta) d\theta = 5 \int \tan^2 \theta d\theta$$

$$= 5 \int (\sec^2 \theta - 1) d\theta = 5 \tan \theta - 5\theta + C$$

We obtain 
$$\tan \theta = \frac{\sqrt{x^2 - 25}}{5}$$
. Hence  $\int \frac{\sqrt{x^2 - 25}}{x} dx = \sqrt{x^2 - 25} - 5\sec^{-1}\left(\frac{x}{5}\right) + C$ 

**Example 6** Evaluate 
$$\int \frac{\sqrt{x^2+1}}{x^2} dx$$

### 5. Integration by Parts

Suppose that u and v are differentiable function of x, then

$$d(uv) = udv + vdu$$

By integrating, we obtain

$$uv = \int u dv + \int v du$$

Or

$$\int u dv = uv - \int v du$$

### **Example**

1. 
$$\int x \sin x dx$$
 (let  $u = x$ ) ans:  $-x \cos x + \sin x + C$ 

2. 
$$\int \arctan x dx \ (\det u = \arctan x)$$
 ans:  $x \arctan x - \frac{1}{2} \ln |1 + x^2| + C$ 

3. 
$$\int x^2 e^x dx$$
 (let  $u = x^2$ ) ans:  $e^x (x^2 - 2x + 2) + C$ 

4. 
$$\int (x^2 + 7x - 5)\cos 2x dx$$
 ans:  $(x^2 + 7x - 5)\frac{\sin 2x}{2} + (2x + 7)\frac{\cos 2x}{4} - \frac{\sin 2x}{4} + C$ 

### 6 Standard Integrals Containing a Quadratic Trinomial

6.1 Integrals of the form 
$$\int \frac{mx+n}{ax^2+bx+c} dx$$
 or  $\int \frac{mx+n}{\sqrt{ax^2+bx+c}} dx$  where  $b^2-4ac < 0$ 

We proceed the calculation by completing square the trinomial and then use the appropriate formulas or substitutions.

### Example 1

1. 
$$\int \frac{dx}{x^2 - 2x + 5}$$
 ans:  $\frac{1}{2} \tan^{-1} \left( \frac{x - 1}{2} \right) + C$   
2. 
$$\int \frac{dx}{2x^2 + 8x + 20}$$
 ans:  $\frac{1}{2\sqrt{6}} \arctan \frac{x + 2}{\sqrt{6}} + C$   
3. 
$$\int \frac{x}{x^2 - 4x + 8} dx$$
 ans:  $\frac{1}{2} \ln \left[ (x - 2)^2 + 4 \right] + \tan^{-1} \left( \frac{x - 2}{2} \right) + c$   
4. 
$$\int \frac{x + 3}{x^2 - 2x + 5} dx$$
 ans:  $\frac{1}{2} \ln \left( x^2 - 2x + 5 \right) + 2 \arctan \frac{x - 1}{2} + C$   
5. 
$$\int \frac{5x + 3}{\sqrt{x^2 + 4x + 10}} dx$$
 ans: 
$$5\sqrt{x^2 + 4x + 10} - 7 \ln \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C$$

6.2 Integrals of the Form 
$$\int \frac{dx}{(mx+n)\sqrt{ax^2+bx+c}}$$

By means of the inverse substitution

$$\frac{1}{mx+n} = t$$

these integrals are reduced to integrals of the form 6.1.

Example 2 Evaluate 
$$\int \frac{dx}{(x+1)\sqrt{x^2+1}}$$
. Ans:  $-\frac{1}{\sqrt{2}} \ln \left| \frac{1-x+\sqrt{2(x^2+1)}}{x+1} \right|$ 

6.3 Integrals of the Form  $\int \sqrt{ax^2 + bx + c} dx$ 

By taking the perfect square out of the quadratic trinomial, the given integral is reduced to one of the following two basic integrals

5

1) 
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + c; a > 0$$
2) 
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 + a^2} \right| + c; a > 0$$

**Example 3** Evaluate  $\sqrt{1-2x-x^2}dx$ 

### 7 Integration of Rational Functions

### 7.1 The Undetermined Coefficients

Integration of a rational function, after taking out the whole part, reduces to integration of the *proper rational fraction* 

$$\frac{P(x)}{Q(x)}\tag{1}$$

where P(x) and Q(x) are integral polynomials, and the degree of the numerator P(x) is lower than that of the denominator O(x). If

$$Q(x) = (x-a)^{\alpha} \cdots (x-l)^{\lambda}$$

where a, ..., l are real distinct roots of the polynomial Q(x), and  $\alpha, ..., \lambda$  are root multiplicities, then decomposition of (1) in to partial fraction is justified:

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - a} + \frac{A_2}{(x - a)^2} + \dots + \frac{A_{\alpha}}{(x - a)^{\alpha}} + \dots + \frac{L_1}{x - l} + \frac{L_2}{(x - l)^2} + \dots + \frac{L_{\lambda}}{(x - l)^{\lambda}}$$
(2)

where  $A_1, A_2, ..., A_{\alpha}, ..., L_1, L_2, ..., L_{\lambda}$  are coefficients to be determined.

### **Example 1** Find

1) 
$$I = \int \frac{xdx}{(x-1)(x+1)^2} \text{Ans:} -\frac{1}{2(x+1)} + \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| + C$$

2) 
$$I = \int \frac{dx}{x^3 - 2x^2 + x}$$
 Ans:  $\ln|x| - \ln|x - 1| - \frac{1}{x - 1} + C$ 

If the polynomial Q(x) has complex roots  $a \pm ib$  of multiplicity k, then partial fractions of the form

$$\frac{A_{1}x + B_{1}}{x^{2} + px + q} + \dots + \frac{A_{k}x + B_{k}}{\left(x^{2} + px + q\right)^{k}}$$
(3)

will enter into the expansion (2). Here,

$$x^{2} + px + q = \lceil x - (a+ib) \rceil \lceil x - (a-ib) \rceil$$

and  $A_1, B_1, ..., A_k, B_k$  are undetermined coefficients. For k=1, the fraction (3) is integrated directly; for k>1, we use *reduction method*; here it is first advisable to represent the quadratic

trinomial  $x^2 + px + q$  in the form  $\left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right)$  and make the substitution  $x + \frac{p}{2} = z$ .

### **Example 2** Find

$$\int \frac{x+1}{\left(x^2+4x+5\right)^2} dx$$
Ans:  $-\frac{x+3}{2\left(x^2+4x+5\right)} - \frac{1}{2} \tan^{-1}(x+2) + C$ 

### 7.2 The Ostrogradsky Method

If Q(x) has multiple roots, then

$$\int \frac{P(x)}{Q(x)} dx = \frac{X(x)}{Q_1(x)} + \int \frac{Y(x)}{Q_2(x)} dx \tag{4}$$

where  $Q_1(x)$  is the greatest common divisor of the polynomial Q(x) and it derivative Q'(x);

$$Q_2(x) = Q(x): Q_1(x)$$

X(x) and Y(x) are polynomials with undetermined coefficients, whose degrees are, respectively, less by unity than those of  $Q_1(x)$  and  $Q_2(x)$ .

The undetermined coefficients of the polynomials X(x) and Y(x) are computed by differentiating the identity (4).

Example 3 Find

$$I = \int \frac{dx}{\left(x^3 - 1\right)^2}$$

**Solution** 

$$\int \frac{dx}{\left(x^3 - 1\right)^2} = \frac{Ax^2 + Bx + C}{x^3 - 1} + \int \frac{Dx^2 + Ex + F}{x^3 - 1} dx$$

Differentiating this identity, we get

$$\frac{1}{\left(x^3 - 1\right)^2} = \frac{\left(2Ax + B\right)\left(x^3 - 1\right) - 3x^2\left(Ax^2 + Bx + C\right)}{\left(x^3 - 1\right)^2} + \frac{Dx^2 + Ex + F}{x^3 - 1}$$

or

$$1 = (2Ax + B)(x^3 - 1) - 3x^2(Ax^2 + Bx + C) + (Dx^2 + Ex + F)(x^3 - 1)$$

Equating the coefficients of the respective degrees of x, we will have

$$D = 0$$
;  $E - A = 0$ ;  $F - 2B = 0$ ;  $D + 3C = 0$ ;  $E + 2A = 0$ ;  $B + F = -1$ 

whence

$$A = 0; B = -\frac{1}{3}; C = 0; D = 0; E = 0; F = -\frac{2}{3}$$

and, consequently,

$$\int \frac{dx}{\left(x^3 - 1\right)^2} = -\frac{1}{3} \frac{x}{x^3 - 1} - \frac{2}{3} \int \frac{dx}{x^3 - 1}$$
 (5)

To compute the integral on the right of (5), we decompose the fraction  $\frac{1}{x^3 - 1} = \frac{L}{x - 1} + \frac{Mx + N}{x^2 + x + 1}$ 

$$\frac{1}{x^3 - 1} = \frac{L}{x - 1} + \frac{Mx + N}{x^2 + x + 1}$$

we will find

$$L = \frac{1}{3}, M = -\frac{1}{3}, N = -\frac{2}{3}.$$

Therefore,

$$\int \frac{dx}{x^3 - 1} = \frac{1}{3} \int \frac{dx}{x - 1} - \frac{1}{3} \int \frac{x + 2}{x^2 + x + 1} dx = \frac{1}{3} \ln |x - 1| - \frac{1}{6} \ln (x^2 + x + 1) - \frac{1}{\sqrt{3}} \tan^{-1} \frac{2x + 1}{\sqrt{3}} + C$$

and

$$\int \frac{dx}{\left(x^3 - 1\right)^2} = -\frac{x}{3\left(x^3 - 1\right)} + \frac{1}{9} \ln \frac{x^2 + x + 1}{\left(x - 1\right)^2} + \frac{2}{3\sqrt{3}} \tan^{-1} \frac{2x + 1}{\sqrt{3}} + C$$

### 8 Integration of a certain Irrational functions

8.1 Integrals of the type  $\int R \left| x, \left( \frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \left( \frac{ax+b}{cx+d} \right)^{\frac{p_2}{q_2}}, \dots \right| dx$  where R is a rational function

and  $p_1, q_1, p_2, q_2, ...$  are integer numbers. We use the substitution  $\frac{ax+b}{cx+d} = z^n$  where n is the least common multiple (lcm) of  $q_1, q_2, ...$ 

**Example 1** Evaluate 
$$\int \frac{dx}{\sqrt{2x-1} - \sqrt[4]{2x-1}}$$

**Solution** 

let  $2x-1=z^4$ , then  $dx=2z^3dz$ , and hence

$$\int \frac{dx}{\sqrt{2x-1} - \sqrt[4]{2x-1}} = \int \frac{2z^3 dz}{z^2 - z} = 2\int \frac{z^2}{z-1} dz = 2\int \left(z+1+\frac{1}{z-1}\right) dz = \left(z+1\right)^2 + 2\ln|z-1| + C$$
$$= \left(1 + \sqrt[4]{2x-1}\right)^2 + \ln\left(\sqrt[4]{2x-1} - 1\right)^2 + C$$

**Example 2** Evaluate 
$$\int \frac{\sqrt{x}dx}{\sqrt[4]{x^3}+1}$$
 answer:  $\frac{4}{3} \left[ \sqrt[4]{x^3} - \ln\left(\sqrt[4]{x^3}+1\right) \right] + C$ 

8.2 Integrals of differential binomials  $\int x^m (a+bx^n)^p dx$  where m, n and p are rational numbers.

If 
$$\frac{m+1}{n}$$
 is an integer, let  $a+bx^n=z^s$  where  $s$  is the denominator of the fraction  $p=\frac{r}{s}$   
If  $\frac{m+1}{n}+p$  is an integer, let  $ax^{-n}+b=z^s$ 

Example 3 Evaluate 
$$\int \frac{x^3 dx}{\left(a+bx^2\right)^{\frac{3}{2}}}$$

**Solution** 

We have 
$$\int \frac{x^3 dx}{(a+bx^2)^{\frac{3}{2}}} = \int x^3 (a+bx^2)^{-\frac{3}{2}} dx$$
. We see that  $m = 3, n = 2, r = -3, s = 2$  and  $\frac{m+1}{n} = 2$ 

, an integer. Then assume

$$a + bx^2 = z^2$$
, then  $x = \left(\frac{z^2 - a}{b}\right)^{\frac{1}{2}}$ ,  $dx = \frac{zdz}{b^{\frac{1}{2}}(z^2 - a)^{\frac{1}{2}}}$  and  $(a + bx^2)^{\frac{3}{2}} = z^3$ 

Hence,

$$\int \frac{x^3}{\left(a+bx^2\right)^{\frac{3}{2}}} dx = \int \left(\frac{z^2-a}{b}\right) \frac{zdz}{b^{\frac{1}{2}} \left(z^2-a\right)^{\frac{1}{2}}} \frac{1}{z^3}$$
$$= \frac{1}{b^2} \int \left(1-az^{-2}\right) dz = \frac{1}{b^2} \left(z+az^{-1}\right) + C$$
$$= \frac{1}{b^2} \frac{2a+bx^2}{\sqrt{a+bx^2}} + C$$

Example 4 Work out 
$$\int \frac{dx}{x^4 \sqrt{1+x^2}} = \frac{(2x^2 - 1)(1+x^2)^{\frac{1}{2}}}{3x^3} + C$$

### 8.3 Integral of the Form

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx \tag{1}$$

where  $P_n(x)$  is a polynomial of degree n

Put

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{n-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$
(2)

where  $Q_{n-1}(x)$  is a polynomial of degree (n-1) with undetermined coefficients are  $\lambda$  is number. The coefficients of the polynomial  $Q_{n-1}(x)$  and the number  $\lambda$  are found by differentiating identity (2).

**Example 5** Find  $\int x^2 \sqrt{x^2 + 4} dx$ 

**Solution** 

$$\int x^2 \sqrt{x^2 + 4} dx = \int \frac{x^4 + 4x^2}{\sqrt{x^2 + 4}} dx = \left(Ax^3 + Bx^2 + Cx + D\right) \sqrt{x^2 + 4} + \lambda \int \frac{dx}{\sqrt{x^2 + 4}} dx$$

whence

$$\frac{x^4 + 4x^2}{\sqrt{x^2 + 4}} = \left(3Ax^2 + 2Bx + C\right)\sqrt{x^2 + 4} + \frac{\left(Ax^3 + Bx^2 + Cx + D\right)x}{\sqrt{x^2 + 4}} + \frac{\lambda}{\sqrt{x^2 + 4}}$$

Multiplying by  $\sqrt{x^2+4}$  and equating the coefficients of identical degrees of x, we obtain

$$A = \frac{1}{4}$$
;  $B = 0$ ;  $C = \frac{1}{2}$ ;  $D = 0$ ;  $\lambda = -2$ 

Hence,

$$\int x^2 \sqrt{x^2 + 4} dx = \frac{x^3 + 2x}{4} \sqrt{x^2 + 4} - 2\ln\left(x + \sqrt{x^2 + 4}\right) + C$$

8.4 Integral of the form

$$\int \frac{dx}{\left(x-\alpha\right)^n \sqrt{ax^2 + bx + c}} \tag{3}$$

They are reduced to integrals of the form (1) by the substitution

$$\frac{1}{x-\alpha} = t$$

**Example 6** Find 
$$\int \frac{dx}{x^5 \sqrt{x^2 - 1}}$$

- 9 A Certain Trigonometric Integrals
- 9.1 Integral of the Form  $\int \sin^n x dx$  and  $\int \cos^n x dx$

If *n* is an odd positive integer, use the identity  $\sin^2 x + \cos^2 x = 1$ 

**Example 1** Find  $\int \sin^5 x dx$ 

**Solution** 

$$\int \sin^5 x dx = \int \sin^4 x \sin x dx$$

$$= \int (1 - \cos^2 x) \sin x dx$$

$$= \int (1 - 2\cos^2 x + \cos^4 x) \sin x dx$$

$$= -\int (1 - 2\cos^2 x + \cos^4 x) d(\cos x)$$

$$= -\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C$$

If *n* is even, use half-angled identities  $\sin^2 x = \frac{1 - \cos 2x}{2}$  and  $\cos^2 x = \frac{1 + \cos 2x}{2}$ 

**Example 2** Find  $\int \cos^4 x dx$ 

**Solution** 

$$\int \cos^4 x dx = \int \left(\frac{1+\cos 2x}{2}\right)^2 dx$$

$$= \frac{1}{4} \int (1+2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \int dx + \frac{1}{4} \int \cos 2x d(2x) + \frac{1}{8} \int (1+\cos 4x) dx$$

$$= \frac{3}{8} \int dx + \frac{1}{4} \int \cos 2x d(2x) + \frac{1}{32} \int \cos 4x d(4x) = \frac{3}{8} x + \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$
Type2:  $\left(\int \sin^m x \cos^n x dx\right)$ 

If either m or n is odd positive integer and other exponent is any number, we factor out  $\sin x$  or  $\cos x$  and use the identity  $\sin^2 x + \cos^2 x = 1$ 

**Example 3** Find  $\int \sin^3 x \cos^{-4} x dx$ 

**Solution** 

$$\int \sin^3 x \cos^{-4} x dx = \int (1 - \cos^2 x) \cos^{-4} x \sin x dx = -\int (\cos^{-4} x - \cos^{-2} x) d(\cos x)$$
$$= -\left[ \frac{(\cos x)^{-3}}{-3} - \frac{(\cos x)^{-1}}{-1} \right] + C = \frac{1}{3} \sec^3 x - \sec x + C$$

If both m and n are even positive integers, we use half-angle identities to reduce the degree of the integrand.

**Example 4** Find  $\int \sin^2 x \cos^4 x dx$ 

**Solution** 

$$\int \sin^2 x \cos^4 x dx = \int \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 + \cos 2x}{2}\right)^2 dx$$

$$= \frac{1}{8} \int \left(1 + \cos 2x - \cos^2 2x - \cos^3 2x\right) dx$$

$$= \frac{1}{8} \int \left[1 + \cos 2x - \frac{1}{2}(1 + \cos 4x) - (1 - \sin^2 2x)\cos 2x\right] dx$$

$$= \frac{1}{8} \int \left[ 1 + \cos 2x - \frac{1}{2} (1 + \cos 4x) - (1 - \sin^2 2x) \cos 2x \right] dx$$

$$= \frac{1}{8} \int \left[ \frac{1}{2} - \frac{1}{2} \cos 4x + \sin^2 2x \cos 2x \right] dx$$

$$= \frac{1}{8} \left[ \int \frac{1}{2} dx - \frac{1}{8} \int \cos 4x d(4x) + \frac{1}{2} \int \sin^2 2x d(\sin 2x) \right]$$

$$= \frac{1}{8} \left[ \frac{1}{2} x - \frac{1}{8} \sin 4x + \frac{1}{6} \sin^3 2x \right] + C$$

9.2 Integral of the Form  $\int \sin mx \cos nx dx$ ,  $\int \sin mx \sin nx dx$ ,  $\int \cos mx \cos nx dx$ 

To handle these integrals, we use the product identities

1/. 
$$\sin mx \cos nx = \frac{1}{2} \left[ \sin \left( m + n \right) x + \sin \left( m - n \right) x \right]$$

2/. 
$$\sin mx \sin nx = -\frac{1}{2} \left[ \cos \left( m + n \right) x - \cos \left( m - n \right) x \right]$$

$$3/.\cos mx\cos nx = \frac{1}{2} \Big[\cos(m+n)x + \cos(m-n)x\Big]$$

**Example 5** Find  $\int \sin 2x \cos 3x dx$ 

**Solution** 

$$\int \sin 2x \cos 3x dx = \frac{1}{2} \int \left[ \sin 5x + \sin (-x) \right] = \frac{1}{10} \int \sin 5x d(5x) - \frac{1}{2} \int \sin x dx$$
$$= -\frac{1}{10} \cos 5x + \frac{1}{2} \cos x + C$$

9.3 Integrals of the Form  $\int \tan^m x dx$  or  $\int \cot^m x dx$  where *m* is a positive number We use the formula

$$\tan^2 x = \sec^2 x - 1 \text{ or } \cot^2 x = \csc^2 x - 1$$

**Example 6** Evaluate  $\int \tan^4 x dx$ 

**Solution** 

$$\int \tan^4 x dx = \int \tan^2 x \left( \sec^2 x - 1 \right) dx = \frac{\tan^3 x}{3} - \int \tan^2 x dx = \frac{\tan^3 x}{3} - \int \left( \sec^2 x - 1 \right) dx$$
$$= \frac{\tan^3 x}{3} - \tan x + x + C$$

10 Integrals of the types  $\int R(\sin x, \cos x) dx$  where R is a rational function.

We can use the substitution  $\tan \frac{x}{2} = t$  and hence we have

$$\sin x = \frac{2t}{1+t^2}$$
,  $\cos x = \frac{1-t^2}{1+t^2}$ ,  $dx = \frac{2dt}{1+t^2}$ 

**Example 1** Calculate  $\int \frac{dx}{1+\sin x + \cos x}$ 

#### **Solution**

Let  $\tan \frac{x}{2} = t$ , then we obtain

$$I = \int \frac{\frac{2dt}{1+t^2}}{1+\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}} = \int \frac{dt}{1+t} = \ln\left|1+t\right| + C = \ln\left|1+\tan\frac{x}{2}\right| + C$$

If the equality  $R(-\sin x, -\cos x) = R(\sin x, \cos x)$  is verified, then we can make the

substitution  $\tan x = t$ . And hence we have  $\sin x = \frac{t}{\sqrt{1+t^2}}$ ,  $\cos x = \frac{1}{\sqrt{1+t^2}}$  and

$$x = \arctan t$$
,  $dx = \frac{dt}{1+t^2}$ .

**Example 2** Calculate 
$$I = \int \frac{dx}{1 + \sin^2 x}$$

#### **Solution**

Let 
$$\tan x = t$$
,  $\sin^2 x = \frac{t^2}{1+t^2}$ ,  $dx = \frac{dt}{1+t^2}$ , then
$$I = \int \frac{dt}{\left(1+t^2\right)\left(1+\frac{t^2}{1+t^2}\right)} = \int \frac{dt}{1+2t^2} = \frac{1}{\sqrt{2}}\arctan\left(t\sqrt{2}\right) + C = \frac{1}{\sqrt{2}}\arctan\left(\sqrt{2}\tan x\right) + C$$

#### 11 Integration of Hyperbolic Functions

Integration of hyperbolic functions is completely analogous to the integration of trigonometric function. The following basic formulas should be remembered

$$1)\cosh^2 x - \sinh^2 x = 1$$

2) 
$$\sinh^2 x = \frac{1}{2} (\cosh 2x - 1)$$

3) 
$$\cosh^2 x = \frac{1}{2} (\cosh 2x + 1)$$

$$4) \cosh x \sinh x = \frac{1}{2} \sinh 2x$$

**Example 1** Find  $\int \cosh^2 x dx$ 

**Solution** 

$$\int \cosh^2 x dx = \int \frac{1}{2} (\cosh 2x + 1) dx = \frac{1}{4} \sinh 2x + \frac{x}{2} + C$$

**Example 2** Find 1) 
$$\int \sinh^3 x \cosh x dx$$
 2)  $\int \frac{\sin x dx}{\sqrt{\cosh 2x}}$  3)  $\int \sinh^2 x \cosh^2 x dx$ 

12 Trigonometric and Hyperbolic Substitutions for Finding Integrals of the Form

$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx \ (1)$$

where R is a rational function.

Transforming the quadratic trinomial  $ax^2 + bx + c$  into a sum or difference of squares, the integral (1) becomes reducible to one of the following types of integrals

1) 
$$\int R\left(z, \sqrt{m^2 - z^2}\right) dz$$
 2)  $\int R\left(z, \sqrt{m^2 + z^2}\right) dz$   $\int R\left(z, \sqrt{z^2 - m^2}\right) dz$ 

The latter integrals are, respectively, taken by means of substitutions

1) 
$$z = m \sin t$$
 or  $z = m \tanh t$ 

- 2)  $z = m \tan t$  or  $z = m \sin t$
- 3)  $z = m \sec t$  or  $z = m \cosh t$

# Example 1 find $I = \int \frac{dx}{(x+1)^2 \sqrt{x^2 + 2x + 2}}$

#### **Solution**

We have  $x^2 + 2x + 2 = (x+1)^2 + 1$ . Putting  $x+1 = \tan z$ , we then have  $dx = \sec^2 z dz$  and

$$I = \int \frac{dx}{(x+1)^2 \sqrt{(x+1)^2 + 1}} = \int \frac{\sec^2 z dz}{\tan^2 z \sec z} = \int \frac{\cos z}{\sin^2 z} dz = -\frac{1}{\sin z} + C = \frac{\sqrt{x^2 + 2x + 2}}{x + 1} + C$$

# **Example 2** Find $\int x\sqrt{x^2 + x + 1}dx$

#### **Solution**

We have

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Putting

$$x + \frac{1}{2} = \frac{\sqrt{3}}{2} \sinh t$$
 and  $dx = \frac{\sqrt{3}}{2} \cosh t dt$ 

we obtain

$$I = \int \left(\frac{\sqrt{3}}{2}\sinh t - \frac{1}{2}\right)\frac{\sqrt{3}}{2}\cosh t \cdot \frac{\sqrt{3}}{2}\cosh t dt = \frac{3\sqrt{3}}{8}\int \sinh t \cosh^2 t dt - \frac{3}{8}\int \cosh^2 t dt$$
$$= \frac{3\sqrt{3}}{8}\frac{\cosh^3 t}{3} - \frac{3}{8}\int \cosh^2 t dt = \frac{3\sqrt{3}}{8}\frac{\cosh^3 t}{3} - \frac{3}{8}\left(\frac{1}{2}\sinh t \cosh t + \frac{1}{2}t\right) + C$$

Since  $\sinh t = \frac{2}{\sqrt{3}} \left( x + \frac{1}{2} \right)$ ,  $\cosh t = \frac{2}{\sqrt{3}} \sqrt{x^2 + x + 1}$  and  $t = \ln \left( x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right) + \ln \frac{2}{\sqrt{3}}$ 

we finally have

$$I = \frac{1}{3} \left( x^2 + x + 1 \right)^{\frac{3}{2}} - \frac{1}{4} \left( x + \frac{1}{2} \right) \sqrt{x^2 + x + 1} - \frac{3}{16} \ln \left( x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right)$$

#### **Exercises**

Using basic formulas to evaluate integrals

1. 
$$\int (6x^2 + 8x + 3) dx$$
  
2.  $\int x(x+a)(x+b) dx$   
3.  $\int (a+bx^3)^2 dx$   
4.  $\int \frac{\sqrt{2+x^2} - \sqrt{2-x^2}}{\sqrt{4-x^4}} dx$   
5.  $\int 3^x e^x dx$   
7.  $\int \sqrt{a-bx} dx$   
8.  $\int \frac{xdx}{2x^2+3}$   
9.  $\int \frac{ax+b}{a^2x^2+b^2} dx$   
10.  $\int \frac{x^2}{1+x^6} dx$   
11.  $\int \frac{x^2 dx}{\sqrt{x^6-1}} dx$ 

$$13. \int \frac{dx}{\sqrt{\left(1+x^2\right)\ln\left(x+\sqrt{1+x^2}\right)}}$$

$$14.\int \left(e^{t}-e^{-t}\right)dt$$

$$15.\int \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)^2 dx$$

$$\mathbf{16.} \int \frac{\left(a^x - b^x\right)^2}{a^x b^x} dx$$

**17.** 
$$\int e^{-(x^2+1)} x dx$$

**18.** 
$$\int x \cdot 7^{x^2} dx$$

**19.** 
$$\int \frac{3-2x}{5x^2+7} dx$$

**20.** 
$$\int \frac{3x+1}{\sqrt{5x^2+1}} dx$$

$$21.\int \frac{e^x}{e^x - 1} dx$$

$$22.\int e^x \sqrt{a - be^x} dx$$

$$23. \int \sin(\ln x) \frac{dx}{x}$$

$$24. \int \frac{\cos ax}{\sin^5 ax} dx$$

$$25. \int \sqrt{1 + 3\cos^2 x} \sin 2x dx$$

$$26. \int \frac{\arctan \frac{x}{2}}{4+x^2} dx$$

$$27. \int \frac{x - \sqrt{\arctan 2x}}{1 + 4x^2} dx$$

$$28. \int \sec^2(ax+b) dx$$

$$29.\int 5^{\sqrt{x}} \frac{dx}{\sqrt{x}}$$

$$30.\int \frac{dx}{\sin\frac{x}{a}}$$

$$31.\int \frac{xdx}{\cos^2 x^2}$$

$$32. \int x \sin(1-x^2) dx$$

$$33. \int \frac{dx}{\sin x \cos x} dx$$

$$34. \int \frac{\sin 3x}{3 + \cos 3x} dx$$

$$35. \int \frac{\sin x \cos x}{\sqrt{\cos^2 x - \sin^2 x}} dx$$

$$36. \int \frac{1+\sin 3x}{\cos^2 3x} dx$$

$$37. \int (2\sinh 5x - \cosh 5x) dx$$

$$38. \int \frac{x^3 - 1}{x^4 - 4x + 1} dx$$

**39.** 
$$\int \frac{x^3}{x^8 + 5} dx$$

**40.** 
$$\int \frac{3 - \sqrt{2 + 3x^2}}{2 + 3x^2} dx$$

$$41.\int \frac{dx}{x \ln^2 x}$$

**42.** 
$$\int a^{\sin x} \cos x dx$$

**43.** 
$$\int \frac{x^2}{\sqrt[3]{x^3 + 1}} dx$$

$$44.\int \frac{xdx}{\sqrt{1-x^4}}$$

45. 
$$\int \frac{\sec^2 x dx}{\sqrt{4 - \tan^2 x}}$$

$$46. \int \frac{\sqrt[3]{1+\ln x}}{x} dx$$

**47.** 
$$\int \frac{e^{\arctan x} + x \ln(1 + x^2) + 1}{1 + x^2} dx$$

$$48. \int \frac{x^2}{x^2 - 2} dx$$

**49.** 
$$\int \frac{5-3x}{\sqrt{4-3x^2}} dx$$

$$50.\int \frac{dx}{e^x + 1}$$

$$51. \int \frac{\arccos \frac{x}{2}}{\sqrt{4-x^2}} dx$$

**52.** Applying the indecated substitutions, find the following integrals

$$\mathbf{a}) \int \frac{dx}{x\sqrt{x^2 - 2}}, x = \frac{1}{t}$$

$$\mathbf{b}) \int \frac{dx}{e^x + 1}, x = -\ln t$$

c) 
$$\int x(5x^2-3)^7 dx$$
,  $5x^2-3=t$ 

$$\mathbf{d}) \int \frac{x dx}{\sqrt{x+1}}, t = \sqrt{x+1}$$

e) 
$$\int \frac{\cos x dx}{\sqrt{1 + \sin^2 x}}, t = \sin x$$

Applying the suitable substitution, compute the following integrals

$$53. \int \frac{\left(\arcsin x\right)^2}{\sqrt{1-x^2}} dx$$

**54.** 
$$\int x\sqrt{x^2+1}dx$$

$$55. \int \frac{xdx}{\sqrt{2x^2 + 3}}$$

$$\mathbf{56.} \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$$

$$57. \int \frac{dx}{\sqrt{x}\sqrt{1+\sqrt{X}}}$$

$$58. \int \frac{dx}{\sqrt{1-x^2} \arcsin x}$$

**59.** 
$$\int x(2x+5)^{10} dx, t = 2x+5$$

**60.** 
$$\int \frac{1+x}{1+\sqrt{x}} dx, x = t^2$$

$$\mathbf{61.} \int \frac{dx}{x\sqrt{2x+1}}$$

**62.** 
$$\int \frac{dx}{\sqrt{e^x - 1}}, t^2 = e^x - 1$$

$$63. \int \frac{\ln 2x}{\ln 4x} \frac{dx}{x}$$

$$64. \int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$$

$$65. \int \frac{\sin^3 x dx}{\sqrt{\cos x}}$$

**66.** Find the integral  $\int \frac{dx}{\sqrt{x(1-x)}}$  by applying the substitution  $x = \sin^2 t$ 

**67.** Find the integral  $\int \sqrt{a^2 + x^2} dx$  by applying the substitution  $x = a \sinh t$ By using the fomula of integration by parts

**68.** 
$$\int \ln x dx$$

**69.** 
$$\int \tan^{-1} x dx$$

$$70. \int \sin^{-1} x dx$$

71. 
$$\int x \sin x dx$$

72. 
$$\int x \cos 3x dx$$

$$73. \int \frac{x}{e^x} dx$$

**74.** 
$$\int x \cdot 2^{-x} dx$$

**75.** 
$$\int x^2 \ln x dx$$

**76.** 
$$\int \ln^2 x dx$$

77. 
$$\int x \tan^{-1} x dx$$

**78.** 
$$\int x \arcsin x dx$$

$$\mathbf{79.} \int \ln\left(x + \sqrt{1 + x^2}\right) dx$$

**80.** 
$$\int \frac{x dx}{\sin^2 x}$$

**81.** 
$$\int e^x \sin x dx$$

**82.** 
$$\int 3^x \cos x dx$$

**83.** 
$$\int \sin(\ln x) dx$$

**84.** 
$$\int (\arcsin x)^2 dx$$

Integration involving quadratic trinomial expression

**85.** 
$$\int \frac{dx}{2x^2 - 5x + 7}$$

$$86. \int \frac{dx}{x^2 + 2x + 5}$$

87. 
$$\int \frac{dx}{x^2 + 2x}$$

$$88. \int \frac{dx}{3x^2 - x + 1}$$

**89.** 
$$\int \frac{x dx}{x^2 - 7x + 13}$$

**90.** 
$$\int \frac{3x-2}{x^2-4x+5} dx$$

**91.** 
$$\int \frac{x^2 dx}{x^2 - 6x + 10}$$

$$92. \int \frac{dx}{\sqrt{x-x^2}} dx$$

**93.** 
$$\int \frac{3x-6}{\sqrt{x^2-4x+5}} dx$$

$$94. \int \frac{2x-8}{\sqrt{1-x-x^2}} dx$$

**95.** 
$$\int \frac{x}{\sqrt{5x^2 - 2x + 1}} dx$$

$$96. \int \frac{dx}{x\sqrt{1-x^2}}$$

Find the Integra

$$\mathbf{108.} \int \frac{dx}{(x+a)(x+b)}$$

109. 
$$\int \frac{x^2 - 5x + 9}{x^2 - 5x + 6} dx$$

110. 
$$\int \frac{dx}{(x+1)(x+2)(x+3)}$$

111. 
$$\int \frac{2x^2 + 41x - 91}{(x - 1)(x + 3)(x - 4)} dx$$

112. 
$$\int \frac{5x^3 + 2}{x^3 - 5x^2 + 4x} dx$$

$$\mathbf{97.} \int \frac{dx}{x\sqrt{x^2 + x + 1}}$$

$$98.\int \frac{dx}{(x-1)\sqrt{x^2-2}}$$

113. 
$$\int \frac{dx}{x(x+1)^2}$$
114. 
$$\int \frac{dx}{(x^2-4x+3)(x^2+4x+5)}$$

115. 
$$\int \frac{dx}{x^3 + 1}$$

$$116. \int \frac{3x+5}{\left(x^2+2x+2\right)^2} dx$$

Ostrogradsky's Method

$$113. \int \frac{x^7 + 2}{\left(x^2 + x + 1\right)^2} dx$$

**Ans:** 
$$\frac{x}{x^2+x+1} + \frac{2}{\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}} - 2\ln(x^2+x+1) + \frac{x^4}{4} - \frac{2x^3}{3} + \frac{x^2}{2} + 2x + C$$

**114.** 
$$\int \frac{(4x^2 - 8x)}{(x-1)^2 (x^2 + 1)^2} dx$$

**114.** 
$$\int \frac{\left(4x^2 - 8x\right)}{\left(x - 1\right)^2 \left(x^2 + 1\right)^2} dx$$
 **Ans:** 
$$\frac{3x^2 - x}{\left(x - 1\right) \left(x^2 + 1\right)} + \ln \frac{\left(x - 1\right)^2}{x^2 + 1} + \arctan x + C$$

**115.** 
$$\int \frac{\left(x^2 - 1\right)^2 dx}{\left(1 + x\right)\left(1 + x^2\right)^3}$$

115. 
$$\int \frac{\left(x^2 - 1\right)^2 dx}{\left(1 + x\right)\left(1 + x^2\right)^3}$$
 Ans:  $\frac{1 + x}{2\left(1 + x^2\right)^2} + \frac{\left(x - 2\right)}{4\left(x^2 + 1\right)} + \frac{1}{4}\arctan x + C$ 

**116.** 
$$\int \frac{dx}{x^4 (x^3 + 1)^2}$$

**Ans:** 
$$\frac{2}{3} \ln \left| \frac{x^3 + 1}{x^3} \right| - \frac{1}{3x^3} - \frac{1}{3(x^3 + 1)} + C$$

117. 
$$\int \frac{dx}{\left(x^2 + 2x + 10\right)^3} \quad \text{Ans: } \frac{1}{648} \left[ \arctan \frac{x+1}{3} + \frac{3(x+1)}{x^2 + 2x + 10} + \frac{18(x+1)}{\left(x^2 + 2x + 10\right)^2} \right] + C$$

118. 
$$\int \frac{(x+2)dx}{(x^2+2x+2)^3}$$
 Ans:  $\frac{3}{8}\arctan(x+1) + \frac{3}{8}\frac{x+1}{x^2+2x+2} + \frac{x}{4(x^2+2x+2)^2} + C$ 

**119.** 
$$\int \frac{3x^4 + 4}{x^2 (x^2 + 1)^3} dx$$
 **Ans:**  $C - \frac{57x^4 + 103x^2 + 32}{8x(x^2 + 1)^2} - \frac{57}{8} \arctan x$ 

Compute integrals of the form  $\int R \left[ x, \left( \frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \left( \frac{ax+b}{cx+d} \right)^{\frac{p_2}{q_2}}, \dots \right] dx$ 

$$120. \int \frac{x^3}{\sqrt{x-1}} dx$$

$$121. \int \frac{\sqrt{x}}{x+2} dx$$

$$122. \int \frac{xdx}{\sqrt[3]{ax+b}}$$

$$123. \int \frac{dx}{(2-x)\sqrt{1-x}}$$

$$124. \int \frac{dx}{\sqrt{x+1} + \sqrt{\left(x+1\right)^3}}$$

Integration of binomial differentials

**128.** 
$$\int x^3 \left(1 + 2x^2\right)^{-\frac{3}{2}} dx$$

**129.** 
$$\int \frac{dx}{x\sqrt[3]{1+x^5}}$$

$$130. \int \frac{dx}{x^4 \sqrt{1+x^2}}$$

$$131. \int \frac{dx}{x^2 \left(2 + x^3\right)^{\frac{5}{3}}}$$

Trigonometric Integrals

132. 
$$\int \cos^2 x dx$$

133. 
$$\int \sin^5 x dx$$

$$134. \int \sin^2 x \cos^3 x dx$$

$$135. \int \sin^3 \frac{x}{2} \cos^5 \frac{x}{2} dx$$

$$136. \int \sin^2 x \cos^2 x dx$$

$$137. \int \frac{\cos^5 x}{\sin^3 x} dx$$

138. 
$$\int \sin^3 x dx$$

$$139. \int \sin^2 x \cos^2 x dx$$

Integral  $\int R(\sin x, \cos x) dx$ 

$$151. \int \frac{dx}{3 + 5\cos x}$$

$$156. \int \frac{dx}{\sin x + \cos x}$$

$$157. \int \frac{\cos x}{1 + \cos x} dx$$

$$125. \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$

**126.** 
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2 - \sqrt{x+1}} dx$$

127. 
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2 - \sqrt{x+1}} dx$$

$$140. \int \sin^2 x \cos^4 x dx$$

141. 
$$\int \frac{dx}{\cos^6 x}$$

$$142. \int \frac{dx}{\sin^2 x \cos^4 x}$$

$$143. \int \frac{dx}{\sin \frac{x}{2} \cos^2 \frac{x}{2}}$$

$$144. \int \frac{dx}{\sin^5 x}$$

$$145. \int \sin 3x \cos 5x dx$$

146. 
$$\int \sin 10x \sin 15x dx$$

$$147. \int \cos \frac{x}{2} \sin \frac{x}{2} dx$$

$$148. \int \sin \frac{x}{3} \sin \frac{2x}{3} dx$$

$$149. \int \cos(ax+b)\cos(ax-b)dx$$

**150.** 
$$\int \sin \omega t \sin (\omega t + \varphi)$$

$$158. \int \frac{dx}{8 - 4\sin x + 7\cos x}$$

$$159. \int \frac{dx}{\cos x + 2\sin x + 3}$$

$$160. \int \frac{\sin x}{\left(1 - \cos x\right)^3} dx$$

$$161. \int \frac{1+\tan x}{1-\tan x} dx$$

Integrations of hyperbolic function

$$162. \int \sinh^3 x dx$$

$$163. \int \cosh^4 x dx$$

**164.** 
$$\int \sinh^3 x \cosh x dx$$

$$165. \int \sinh^2 x \cosh^2 x dx$$

Integral 
$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx$$

**169.** 
$$\int \sqrt{3-2x-x^2} \, dx$$

**170.** 
$$\int \sqrt{2 + x^2} \, dx$$

**171.** 
$$\int \sqrt{x^2 - 2x + 2} dx$$

**172.** 
$$\int \sqrt{x^2 - 4} dx$$

$$173. \int \sqrt{x^2 + x} dx$$

$$166. \int \frac{dx}{\sinh^2 x \cosh^2 x}$$

**167.** 
$$\int \tanh^3 x dx$$

$$168. \int \frac{dx}{\sinh^2 x + \cosh^2 x}$$

**174.** 
$$\int \sqrt{x^2 - 6x - 7} \, dx$$

**175.** 
$$\int (x^2 + x + 1)^{\frac{3}{2}} dx$$

**176.** 
$$\int \frac{dx}{(x-1)\sqrt{x^2-3x+2}}$$

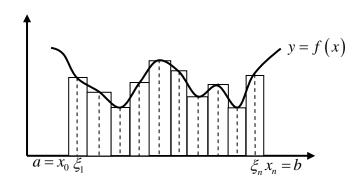
## **Definition Integral**

#### 1. Riemann Sum

Let f(x) be a function defined over the close interval  $a \le x \le b$  with  $a = x_0 < x_1 < ... < x_n = b$  be an arbitrary partition in n subinterval. We called the *Riemann Sum* of the function f(x) over [a,b] the sum of the form

$$S_n = \sum_{i=1}^n f\left(\xi_i\right) \Delta x_i$$

where  $x_{i-1} \le \xi_i \le x_i$ ,  $\Delta x_i = x_i - x_{i-1}$ , i = 1, 2, ..., n.



#### 2. Definite Integral

The limit of the sum  $S_n$  when the number of the subinterval n approaches infinity and that the largest  $\Delta x_i$  approaches zero is called *definite integral* of the function f(x) with the upper limit x = b and lower limit x = a.

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i = \int_a^b f(x) dx$$

or equivalently

$$\lim_{n \to +\infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

If the function f(x) is continuous on [a,b] or if the limit exists, the function is said to be integrable on [a,b].

If a is in the domain of f, we defined  $\int_{a}^{a} f(x) dx = 0$  and If f is integrable on [a,b], then we

define 
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
.

**Example 1** Find the Riemann Sum  $S_n$  for the function f(x) = 1 + x over the interval [1,10] by dividing into n equal subintervals, and then find the limit  $\lim_{n \to \infty} S_n$ .

**Solution** 

$$\Delta x_i = \frac{10-1}{n} = \frac{9}{n}$$
  $\xi_i = x_i = x_0 + i\Delta x_i = 1 + \frac{9i}{n}$ 

and hence 
$$f(\xi_i) = 1 + 1 + \frac{9i}{n} = 2 + \frac{9i}{n}$$
  

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

$$= \sum_{i=1}^n \left(2 + \frac{9i}{n}\right) \frac{9}{n}$$

$$= \frac{18}{n} \sum_{i=1}^n 1 + \frac{81}{n^2} \sum_{i=1}^n i$$

$$= \frac{18}{n} n + \frac{81}{n^2} (1 + 2 + \dots + n)$$

$$= 18 + \frac{81}{n^2} \frac{n(n-1)}{2}$$

$$= 18 + \frac{81}{2} \left(1 - \frac{1}{n}\right)$$

then

$$\lim_{n \to \infty} S_n = \lim_{x \to \infty} \left( 18 + \frac{81}{2} \left( 1 - \frac{1}{n} \right) \right) = 18 + \frac{81}{2} = \frac{117}{2}$$

**Example 2** 
$$\int_{-1}^{3} (2x^2 - 8) dx$$

#### **Solution**

Divide the interval [-1,3] into n equal subintervals. Hence we obtain  $\Delta x_i = \frac{4}{n}$ . In each subinterval  $[x_{i-1}, x_i]$ , choose  $\xi_i$  such that  $\xi_i = x_0 + i\Delta x_i = -1 + \frac{4i}{n}$ 

$$\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} = \sum_{i=1}^{n} \left[ 2\left(-1 + \frac{4i}{n}\right)^{2} - 8\right] \frac{4}{n}$$

$$= \sum_{i=1}^{n} \left[ 2\left(1 - \frac{8i}{n} + \frac{16i^{2}}{n^{2}}\right) - 8\right] \frac{4}{n}$$

$$= \sum_{i=1}^{n} \left[ -6 - \frac{16i}{n} + \frac{32i^{2}}{n^{2}} \right] \frac{4}{n}$$

$$= \sum_{i=1}^{n} \left( -\frac{24}{n} - \frac{64i}{n^{2}} + \frac{128i^{2}}{n^{3}} \right)$$

$$= -\frac{24}{n} n - \frac{64}{n^{2}} (1 + 2 + \dots + n) + \frac{128}{n^{3}} (1^{2} + 2^{2} + \dots + n^{2})$$

$$= -24 - \frac{64}{n^{2}} \cdot \frac{n(1+n)}{2} + \frac{128}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6}$$

$$= -24 - 32\left(1 + \frac{1}{n}\right) + \frac{128}{6}\left(2 + \frac{3}{n} + \frac{1}{n^{2}}\right)$$

$$\int_{-1}^{2} (2x^{2} - 8) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

$$= \lim_{n \to \infty} \left( -24 - 32 \left( 1 + \frac{1}{n} \right) + \frac{128}{6} \left( 2 + \frac{3}{n} + \frac{1}{n^{2}} \right) \right)$$

$$= -24 - 32 + \frac{128}{3} = -\frac{40}{3}$$

#### Subinterval property

If f is intergrable on an interval containing the points a, b, and c, then

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

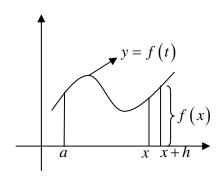
no matter what the order of a, b, and c.

#### 3. The first Fundamental Theorem of Calculus

Theorem A First Fundamental theorem of Calculus

Let f be continuous on the closed interval [a,b] and let x be a variable point in (a,b), then

$$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$$



#### **Proof**

For  $x \in (a,b)$  we define  $F(x) = \int_a^x f(t)dt$ , then

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = F'(x)$$

$$= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

But  $\int_{x}^{x+h} f(t)dt$  represents the area bounded by x-axis the curve f(t) between x and x+h, which is approximate to hf(x); that is  $\int_{x}^{x+h} f(t)dt \approx hf(x)$ . So,  $\frac{d}{dx} \int_{a}^{x} f(t)dt = \lim_{h \to 0} \frac{1}{h} hf(x) = f(x).$ 

$$\frac{d}{dx} \left[ \int_{2}^{x} \frac{t^{\frac{3}{2}}}{\sqrt{t^{2} + 17}} dt \right] = \frac{x^{\frac{3}{2}}}{\sqrt{x^{2} + 7}}$$

Example2

$$\frac{d}{dx} \left[ \int_{x}^{4} \tan^{2} t \cos t dt \right] = \frac{d}{dx} \left[ -\int_{4}^{x} \tan^{2} t \cos t dt \right]$$
$$= -\frac{d}{dx} \left[ \int_{4}^{x} \tan^{2} t \cos t dt \right] = -\tan^{2} x \cos x$$

**Example3** Find 
$$\frac{d}{dx} \left[ \int_{1}^{x^2} (3t-1) dt \right]$$

#### **Solution**

Let  $u = x^2 \Rightarrow du = 2x$  and hence

$$\frac{d}{dx} \left[ \int_{1}^{x^{2}} (3t-1)dt \right] = \frac{d}{dx} \left[ \int_{1}^{u} (3t-1)dt \right]$$
$$= \frac{d}{du} \left[ \int_{1}^{u} (3t-1)dt \right] \frac{du}{dx}$$
$$= (3u-1)2x = 6x^{3} - 2x$$

#### **Theorem B** Comparison Property

If f and g are integrable on [a,b] and if  $f(x) \le g(x)$  for all x in [a,b], then

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

#### **Proof**

Over the interval [a,b], let there be an arbitrary partition  $a=x_0 < x_1 < \cdots < x_n = b$ . Let  $\xi_i$  be a sample point on the i<sup>th</sup> subinterval  $[x_{i-1},x_i]$ , then we conclude that

$$f(\xi_{i}) \leq g(\xi_{i})$$

$$f(\xi_{i}) \Delta x_{i} \leq g(\xi_{i}) \Delta x_{i}$$

$$\sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} \leq \sum_{i=1}^{n} g(\xi_{i}) \Delta x_{i}$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} \leq \lim_{n \to \infty} \sum_{i=1}^{n} g(\xi_{i}) \Delta x_{i}$$

$$\int_{0}^{b} f(x) dx \leq \int_{0}^{b} g(x) dx$$

**Theorem C** Boundedness Property

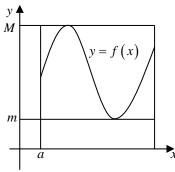
If f is integrable on [a,b] and  $m \le f \le M$  for all x in [a,b], then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

#### **Proof**

Let  $h(x) = m, \forall x \in [a,b]$ , then  $h(x) \le f(x), \forall x \in [a,b]$ . Hence,

$$\int_{a}^{b} h(x)dx \le \int_{a}^{b} f(x)dx$$
$$m(b-a) \le \int_{a}^{b} f(x)dx$$



By similar way, let  $g(x) = M, \forall x \in [a, b]$ , then

$$f(x) \le g(x), \forall x \in [a,b]$$

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x) dx \le M(b-a)$$

Therefore  $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ 

# 4. Second Fundamental Theorem of Calculus and Mean value theorem For Integrals

#### **Second Fundamental Theorem of Calculus**

Let f be integrable on [a,b] and F be any primitive of f on [a,b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

It is also known as Newton-Leibniz Formula. For convenience we introduce a special symbol for F(b)-F(a) by writing

$$F(b)-F(a) = [F(x)]_a^b \text{ or } F(b)-F(a) = F(x)\Big|_a^b$$

**Example 1** 
$$\int_{2}^{5} x^{2} dx = \frac{x^{3}}{3} \Big|_{2}^{5} = \frac{125}{3} - \frac{8}{3} = \frac{117}{3} = 39$$

**Example** 
$$\int_0^{\frac{\pi}{4}} \sin^3 2x \cos 2x dx = \frac{\sin^4 2x}{8} \Big|_0^{\frac{\pi}{4}} = \frac{1}{8}$$

#### **Mean Value Theorem for Integral**

If f is continuous on [a,b], there is a number c between a and b such that

$$\int_{a}^{b} f(t)dt = f(c)(b-a)$$

Proof

Let 
$$F(x) = \int_{a}^{x} f(t) dt$$
,  $a \le x \le b$ 

By Mean value theorem for derivative, we obtain

$$F(b)-F(a) = F'(c)(b-a)$$

$$\int_{a}^{b} f(t)dt - 0 = f(c)(b-a)$$

$$\int_{a}^{b} f(t)dt = f(c)(b-a)$$

$$f(c) = \frac{1}{b-a} \int_a^b f(t) dt$$
 is called the *mean value*, or average value of f on  $[a,b]$ 

**Example 1** Find the average value of  $f(x) = x^2$  on the interval [1,4] **Solution** 

$$f(x)_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{4-1} \int_{1}^{4} x^{2} dx = \frac{1}{3} \cdot 21 = 7$$

**Example2** Find the average value of  $f(x) = \cos 2x$  on the interval  $[0, \pi]$ 

### 5. Change of variable in definite integral

If f(x) is continuous over the close interval  $a \le x \le b$ , if  $x = \varphi(t)$  is continuous and its derivative is  $\varphi'(t)$  over the interval  $\alpha \le t \le \beta$ , where  $a = \varphi(\alpha)$  and  $b = \varphi(\beta)$  and if  $f[\varphi(t)]$  is defined et continuous over the interval  $\alpha \le t \le \beta$ , then

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt$$

**Example 1** Find 
$$\int_0^a x^2 \sqrt{a^2 - x^2} dx$$
  $(a > 0)$ 

#### **Solution**

Let  $x = a \sin t$ ,  $dx = a \cos t$ ,  $t = \arcsin \frac{x}{a}$ ,  $\alpha = \arcsin 0 = 0$  and  $\beta = \arcsin 1 = \frac{\pi}{2}$ . then we obtain

$$\int_0^a x^2 \sqrt{a^2 - x^2} dx = \int_0^{\frac{\pi}{2}} a^2 \sin^2 t \left( \sqrt{a^2 - a^2 \sin^2 t} \right) a \cos t dt$$

$$= a^4 \int_0^{\frac{\pi}{2}} \sin^2 t \cos^2 t dt = \frac{a^4}{4} \int_0^{\frac{\pi}{2}} \sin^2 2t dt$$

$$= \frac{a^4}{8} \int_0^{\frac{\pi}{2}} (1 - \cos 4t) dt = \frac{a^4}{8} \left( 1 - \frac{1}{4} \sin 4t \right) \Big|_0^{\frac{\pi}{2}} = \frac{\pi a^4}{16}$$

**Example2** Evaluate  $\int_0^4 \frac{dx}{1+\sqrt{x}} = t^2 \text{ (answer: } 4-2\ln 3\text{ )}$ 

**Example3** Evaluate 
$$\int_0^{\ln 2} \sqrt{e^x - 1} dx$$
 let  $e^x - 1 = z^2$  (answer:  $2 - \frac{\pi}{2}$ )

#### 6. Integration by parts

If the functions u(x) and v(x) are continuous differentiable over [a,b], we have

$$\int_{a}^{b} u(x)v'(x) dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) dx$$

**Example 1** Evaluate  $\int_0^{\frac{\pi}{2}} x \cos x dx$  (answer:  $\frac{\pi}{2} - 1$ )

**Example2** Evaluate  $\int_0^1 x^3 e^{2x} dx$  (answer:  $\frac{e^2 + 3}{8}$ )

**Example3** Evaluate  $\int_0^{\pi} e^x \sin x dx$  (answer:  $\frac{1}{2} (e^{\pi} + 1)$ )

#### 7. Improper Integral

Improper integrals refer to those involving in the case where the interval of integration is infinite and also in the case where f (the integrand) is unbounded at a finite number of points on the interval of integration.

7.1 Improper Integral with Infinite Limits of Integration

Let a be a fixed number and assume that  $\int_{a}^{N} f(x)dx$  exists for all  $N \ge a$ . Then if

 $\lim_{N\to+\infty}\int_{a}^{N}f(x)dx$  exists, we define the improper integral  $\int_{a}^{+\infty}f(x)dx$  by

$$\int_{a}^{+\infty} f(x)dx = \lim_{N \to +\infty} \int_{a}^{N} f(x)dx$$

The improper integral is said to be *convergent* if this limit is a finite number and to be *divergent* otherwise.

**Example** Evaluate  $I = \int_{1}^{+\infty} \frac{dx}{x^2}$ 

**Solution** 

$$\int_{1}^{+\infty} \frac{dx}{x^2} = \lim_{N \to +\infty} \int_{1}^{N} \frac{dx}{x^2} = \lim_{N \to +\infty} \left( -\frac{1}{x} \right) \Big|_{1}^{N} = \lim_{N \to +\infty} \left( -\frac{1}{N} + 1 \right) = 1$$

Thus, the improper integral converges and has the value 1.

**Example** Evaluate 
$$\int_{1}^{+\infty} \frac{dx}{x^{p}} \int_{0}^{+\infty} xe^{-2x} dx$$

Let b be a fixed number and assume  $\int_{a}^{b} f(x) dx$  exists for all t < b. Then if

 $\lim_{t \to -\infty} \int_{t}^{b} f(x) dx$  exists we define the improper integral

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

The improper integral  $\int_{-\infty}^{b} f(x) dx$  is said to be converge if this limit is a finite number

and to diverge otherwise. If both  $\int_{a}^{+\infty} f(x) dx$  And  $\int_{-\infty}^{a} f(x) dx$ 

converge for some number a, the improper integral of f(x) on the entire x-axis is defined by

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx$$
**Example** Evaluate 
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} \text{ (answer: } \pi \text{)} \qquad \int_{-\infty}^{+\infty} \frac{dx}{x^2+2x+2} \text{ (answer: } \pi \text{)}$$

7.2 Improper Integrals with Unbounded Integrands

If f is unbounded at a and  $\int_{t}^{b} f(x) dx$  exists for all t such that  $a < t \le b$ , then  $\int_{t}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$ 

If the limit exists (as a finite number), we say that the improper integral converge; otherwise, the improper integral diverges. Similarly, if f is unbounded at b and

 $\int f(x)dx$  exists for all t such that  $a \le t < b$ , then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$$

If f is unbounded at c where a < c < b the improper integral  $\int_{c}^{c} f(x) dx$  and  $\int_{c}^{c} f(x) dx$ 

both converge, then 
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

We say that the integral on the left diverges if either or both of the integrals on the right diverge.

**Example** Find 
$$\int_{0}^{1} \frac{dx}{(x-1)^{2/3}} \qquad \int_{0}^{3} \frac{dx}{x-2}$$

**1.** For 
$$x \ge a$$
, if  $0 \le f(x) \le g(x)$  and if  $\int_a^{+\infty} g(x) dx$  converges, then  $\int_a^{+\infty} f(x) dx$ 

converge and 
$$\int_{a}^{+\infty} f(x) dx \le \int_{a}^{+\infty} g(x) dx$$

**Example** Investigate the convergence of  $\int_{1}^{+\infty} \frac{dx}{x^{2}(1+e^{x})}$ 

**2.** For 
$$x \ge a$$
, if  $0 \le f(x) \le g(x)$  and if  $\int_a^{+\infty} f(x) dx$  diverges, then  $\int_a^{+\infty} g(x) dx$  diverges.

**Example** Investigate the convergence of  $\int_{-\infty}^{\infty} \frac{x+1}{\sqrt{x^3}} dx$ 

3. If  $\int_{-\infty}^{+\infty} |f(x)| dx$  is convergent then  $\int_{-\infty}^{+\infty} f(x) dx$  is also convergent, specifically absolute convergent.

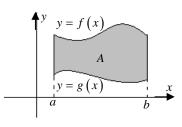
**Example** Investigate the convergence of  $\int_{-\infty}^{\infty} \frac{\sin x}{x^3} dx$ 

8 Area Between Two Curves

8.1 Area Between 
$$y = f(x)$$
 and  $y = g(x)$ 

If f and g are continuous functions on the interval [a,b], and if  $f(x) \ge g(x)$  for all x in [a,b], then the area of , and if  $f(x) \ge g(x)$  for all x in [a,b], then the area of the region bounded above by y = f(x), below by y = g(x), on the left by line x = a, and on the right by the line x = b is defined by

$$A = \int_{a}^{b} \left[ f(x) - g(x) \right] dx$$



**Example 1** Find the area of region bounded above by y = x + 6, bounded below by  $y = x^2$ , and bounded on the sides by the lines x = 0 and x = 2. ans:  $\frac{34}{3}$ 

**Example2** Find the area of the region enclosed between the curves  $y = x^2$  and y = x + 6.  $\frac{125}{6}$ 

### **8.2** Area Between x = v(y) and x = w(y)

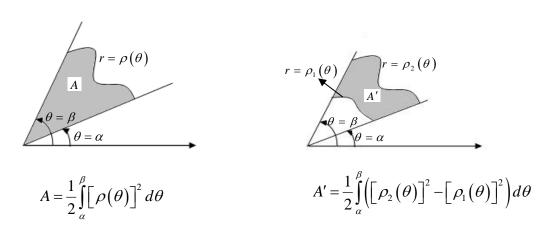
If w and v are continuous functions and if  $w(y) \ge v(y)$  for all y in [c,d], then the area of the region bounded on the left by x = v(y), on the right by x = w(y), below by y = c, and above by y = d is defined by

$$A = \int_{c}^{d} \left[ w(y) - v(y) \right] dy$$

**Example 1** Find the area of the region enclosed by  $x = y^2$  and y = x - 2, integrating with respect to y. (ans:  $\frac{9}{2}$ )

**Example2** Find the area of the region enclosed by the curves  $y = x^2$  and y = 4x by integrating a/x. with respect to x

#### 8.3 Area in Polar Coordinates



**Example** Calculate the area enclosed by the cardioid  $r = 1 - \cos \theta$  (answer:  $\frac{3\pi}{2}$ )

**Example** Find the area of region that is inside the cardioid  $r = 4 + 4\cos\theta$  and outside the circle r = 6 (answer:  $18\sqrt{3} - 4\pi$ ).

#### 9 Volume of Solid

9.1 Volume By Cross Sections Perpendicular To The X-Axis Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x = a and x = b. If, for each x in the interval [a,b], the cross-sectional area of S

perpendicular to the x-axis is A(x), then the volume of the solid, provided A(x) is integrable, is defined by

$$V = \int_{a}^{b} A(x) dx$$

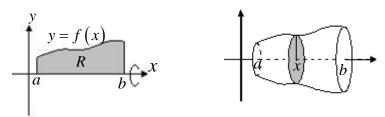
9.2 Volume By Cross Sections Perpendicular To The Y-Axis

S be a solid bounded by two parallel planes perpendicular to the y-axis at y = c and y = d. If, for each y in the interval [c,d], the cross-sectional area of S perpendicular to the y-axis is A(y), then the volume of the solid, provided A(y) is integrable, is defined by

 $V = \int_{c}^{d} A(y)dy$ 

**Example 1** Derive the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of length a.  $\frac{1}{3}a^2h$ .

#### 9.3 Volumes of Solids Of Revolution



#### 2.3.a Volumes by Disks Perpendicular To the x-Axis

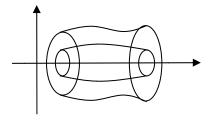
$$V = \int_{a}^{b} \pi \left[ f(x) \right]^{2} dx$$

**Example 2** Find the volume of the solid that is obtained when the region under the curve  $y = \sqrt{x}$  over the interval [1,4] is revolved about the *x*-axis.( ans:  $\frac{15\pi}{2}$ )

**Example 3** Derive the formula for the volume of a sphere of radius r. (ans:  $\frac{4}{3}\pi r^3$ )

#### 2.3.b Volumes by Washers Perpendicular to the x-Axis

Suppose that f and g are nonnegative continuous functions such that  $g(x) \le f(x)$  for  $a \le x \le b$ . Let R be the region enclosed between the graphs of these functions and lines x = a and x = b. When this region is revolved about the x-axis, it generates a solid whose volumes is defined by



$$V = \int_{a}^{b} \pi \left( \left[ f(x) \right]^{2} - \left[ g(x) \right]^{2} \right) dx$$

**Example 4** Find the volume of the solid generated when the region between the graphs of  $f(x) = \frac{1}{2} + x^2$  and g(x) = x over the interval [0,2] is revolved about the *x-axis*. Ans:  $\frac{69\pi}{10}$ 

#### 2.3.c Volumes By Disks Perpendicular To the y-axis

$$V = \int_{c}^{d} \pi \left[ u(x) \right]^{2} dy$$

#### 2.3.d Volumes By Washers Perpendicular To y-axis

$$V = \int_{c}^{d} \pi \left( \left[ u(y) \right]^{2} - \left[ v(y) \right]^{2} \right) dy$$

#### 2.3.e Cylindrical Shells Centered on the y-axis

Let R be the a plane region bounded above by a continuous curve y = f(x), below by the x-axis, and on the left and right respectively by the lines x = a and x = b. Then the volume of the solid generated by revolving R about the y-axis is given by

$$V = 2\pi \int_{a}^{b} x f(x) dx$$

**Example 5** Find the volume of the solid generated when the region enclosed between  $y = \sqrt{x}$ , x = 1, x = 4 and the x-axis revolved about the y-axis.

**Solution** 

Since  $f(x) = \sqrt{x}$ , a = 1, b = 4, then the volume of the solid is

$$V = 2\pi \int_{1}^{4} \sqrt{x} dx = 2\pi \int_{1}^{4} x^{3/2} dx = 2\pi \cdot \frac{2}{5} x^{\frac{5}{2}} \bigg|_{1}^{4} = \frac{4\pi}{5} [32 - 1] = \frac{124\pi}{5}$$

**Example 6** Find the volume of the solid generated when the region R in the first quadrant enclosed between y = x and  $y = x^2$  is revolved about the y-axis. (Answer:  $\pi/6$ )

#### 3 Length of a Plane Curve

If f is a smooth function on [a,b], then the arc length L of the curve y = f(x) x = a to x = b is defined by

$$L = \int_{a}^{b} \sqrt{1 + \left[ f'(x) \right]^{2}} dx = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^{2}} dx$$

Similarly, for a curve expressed in the form x = g(y) where g' is continuous on [c,d], the arc length L from y = c to y = d defined by

$$L = \int_{c}^{d} \sqrt{1 + \left[g'(y)\right]^{2}} dy = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

**Example 1** Find the arc length of  $f(x) = x^2$  from (0,0) to (1,1) **Solution** 

$$f(x) = x^2 \Rightarrow f'(x) = 2x$$

$$\sqrt{1 + \left[f'(x)\right]^2} = \sqrt{1 + 4x^2} = \frac{1}{2}\sqrt{\left(\frac{1}{2}\right)^2 + x^2}$$

Then the arc length is defined by

$$L = \frac{1}{2} \int_{0}^{1} \sqrt{\left(\frac{1}{2}\right)^{2} + x^{2}} dx$$

$$= \left[ x \sqrt{\left(\frac{1}{2}\right)^{2} + x^{2}} + \left(\frac{1}{2}\right)^{2} \ln\left(x + \sqrt{x^{2} + \left(\frac{1}{2}\right)^{2}}\right) \right]_{0}^{1}$$

$$= \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln\left(2 + \sqrt{5}\right)$$

If the curve is given in polar coordinate system  $r = \rho(\theta)$ ,  $\alpha \le \theta \le \beta$  then the arc length of the curve is defined by

$$L = \int_{\alpha}^{\beta} \sqrt{\left[\rho(\theta)\right]^{2} + \left[\rho'(\theta)\right]^{2}} d\theta = \int_{\alpha}^{\beta} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

**Example 2** Find the circumference of the circle or radius *a*. **Solution** 

As a polar equation this circle is denoted by r = a,  $0 \le \theta \le 2\pi$ 

Then the arc length is 
$$L = \int_{0}^{2\pi} \sqrt{a^2} d\theta = a \int_{0}^{2\pi} d\theta = a\theta \Big|_{0}^{2\pi} = 2\pi a$$

**Example 3** Find the length of the cardioid  $r = 1 - \cos \theta$ 

If the curve is defined by the parametric equation x = x(t), y = y(t),  $t \in [a,b]$ , then the length of the curve is

$$L = \int_{a}^{b} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} dt$$

**Example 4** Find the circumference of the circle of the radius r **Solution** 

Parametric form, the circle is defined by  $x(t) = r \cos t$ ,  $y(t) = r \sin t$  with  $t \in [0, 2\pi]$ , then

$$L = \int_{0}^{2\pi} \sqrt{r^2 \cos^2 t + r^2 \sin^2 t} dt = \int_{0}^{2\pi} r dt = 2\pi r$$

**Example 5** Find the arc length of the astroid  $x(t) = a\cos^3 t$ ,  $y(t) = a\sin^3 t$ . (ans6a). 4 Area of Surface of Revolution

Let f be a smooth, nonnegative function on [a,b]. Then the surface area S generated by revolving the portion of the curve y = f(x) between x = a and x = b about x-axis is

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left[f'(x)\right]^{2}} dx$$

For a curve expressed in the form x = g(y) where g' is continuous on [a,d] and  $g(y) \ge 0$  for  $c \le y \le d$ , the surface area S generated by revolving the portion of the curve from y = c to y = d about the y-axis is given by

$$S = 2\pi \int_{0}^{d} g(y) \sqrt{1 + \left[g'(y)\right]^{2}} dy$$

**Example1** Find the surface area generated by revolving the curve  $y = \sqrt{1 - x^2}$ ,

$$0 \le x \le \frac{1}{2}$$
 about the x-axis.

**Solution** 

$$f(x) = \sqrt{1 - x^2} \Rightarrow f'(x) = \frac{-x}{\sqrt{1 - x^2}}$$
. Thus,  

$$S = 2\pi \int_{0}^{1/2} \sqrt{1 - x^2} \sqrt{1 + \frac{x^2}{1 - x^2}} dx = 2\pi \int_{0}^{1/2} dx = \pi$$

**Example2** Find the surface area generated by revolving the curve  $y = \sqrt[3]{3x}$ ,  $0 \le y \le 2$  about the y-axis.

**Solution** 

$$y = \sqrt[3]{3x} \Rightarrow x = g(y) = \frac{1}{3}y^3$$
. Thus,  $g'(y) = y^2$ , then
$$S = 2\pi \int_0^2 \left(\frac{1}{3}y^3\right) \sqrt{1 + y^4} dy = \frac{2\pi}{3} \int_0^2 y^3 \sqrt{1 + y^4} dy$$

$$= \frac{2\pi}{3} \left[\frac{1}{6} (1 + y^4)^{3/2}\right]_0^2 = \frac{\pi}{9} (17^{3/2} - 1)$$

#### **Exercises**

Work out the following integrals

$$1. \int_{0}^{2} \frac{x^{3} dx}{x+1} = \frac{8}{3} - \ln 3$$

2. 
$$\int_{0}^{16} \frac{x^{\frac{1}{4}}}{1+x^{\frac{1}{4}}} dx = \frac{8}{3} + 4 \arctan 2$$

$$3. \int_0^{\frac{\pi}{2}} \sin^3 x \cos^3 x dx = \frac{1}{12}$$

$$4. \int_0^{\frac{\pi}{4}} \sec^4 \theta d\theta = \frac{4}{3}$$

$$5. \int_{3}^{29} \frac{\left(x-2\right)^{\frac{2}{3}} dx}{\left(x-2\right)^{\frac{2}{3}} + 3} = 8 + \frac{3\sqrt{3}\pi}{2}$$

$$6. \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x} = \frac{\pi}{3\sqrt{3}}$$

$$7. \int_{1}^{2} \frac{x-3}{x^{3}+x^{2}} dx = 4 \ln \frac{4}{3} - \frac{3}{2}$$

**8.** 
$$\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \arctan e - \frac{\pi}{4}$$

$$9. \int_0^{\frac{\pi}{2}} \sin^4 x dx = \frac{3\pi}{16}$$

$$\mathbf{10.} \int_0^{\pi} \cos^4 x dx = \frac{3\pi}{8}$$

$$11. \int_{1}^{e^{2}} \frac{dx}{x(1+\ln x)} = \ln 3$$

12. 
$$\int_{1}^{e^{2}} \frac{dx}{x(1+\ln x)^{2}} = \frac{2}{3}$$

$$13. \int_0^1 \frac{x dx}{x^2 + 3x + 2} = \ln \frac{9}{8}$$

**14.** 
$$\int_0^1 \frac{z^3}{z^8 + 1} dz = \frac{\pi}{16}$$

$$15. \int_0^{\frac{\sqrt{2}}{2}} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{4}$$

$$\mathbf{16.} \int_{2}^{5} \frac{dx}{\sqrt{5+4x-x^2}} = \frac{\pi}{2}$$

$$17. \int_0^{\frac{\pi}{2}} \sin^3 x dx = \frac{2}{3}$$

**18.** 
$$\int_{e}^{e^2} \frac{dx}{x \ln x} = \ln 2$$

Find the derivative of the following functions

**19.** 
$$F(x) = \int_1^x \ln t dt$$
, Ans:  $\ln x$ 

**20.** 
$$\int_{x}^{0} \sqrt{1+t^4} dt$$
, Ans:  $-\sqrt{1+x^4}$ 

**21.** 
$$F(x) = \int_{x}^{x^2} e^{-t^2} dt$$
, Ans:  $-e^{-x^2} + 2xe^{-x^4}$ 

**22.** 
$$F(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \cos(t^2) dt$$
, Ans:  $\frac{1}{x^2} \cos(\frac{1}{x^2}) + \frac{1}{2\sqrt{x}} \cos x$ 

Work out the following integrals

$$23. \int_0^1 \frac{x dx}{\sqrt{1-x^2}} = 1$$

**24.** 
$$\int_0^\infty e^{-x} dx = 1$$

**25.** 
$$\int_0^{+\infty} \frac{dx}{a^2 + x^2} = \frac{\pi}{2a}, (a > 0)$$

**26.** 
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{2}$$

$$27. \int_0^1 \ln x dx = -1$$

$$28. \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \pi$$

**29.** 
$$\int_0^9 \frac{dx}{(x-1)^{2/3}} = 9$$

$$30. \int_{e}^{\infty} \frac{dx}{x \ln x \sqrt{\ln x}} = 2$$

$$31. \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2\sqrt{a}}$$

$$32. \int_0^\infty \frac{dx}{e^x + e^{-x}} = \frac{\pi}{4}$$

$$33. \int_{2}^{\infty} \frac{dx}{x \ln^{2} x} = \frac{1}{\ln 2}$$

Compute the improper integrals (or prove their divergence)

$$34. \int_{1}^{\infty} \frac{dx}{x^4}$$

**35.** 
$$\int_0^\infty e^{-ax} dx, a > 0$$

**36.** 
$$\int_{-\infty}^{+\infty} \frac{2x dx}{x^2 + 1}$$

$$37. \int_{2}^{+\infty} \frac{\ln x}{x} dx$$

$$38. \int_1^\infty \frac{dx}{x^2(x+1)}$$

$$\mathbf{39.} \int_0^\infty \frac{dx}{\left(1+x\right)^3}$$

$$\mathbf{40.} \int_{\sqrt{2}}^{\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$

$$41. \int_{a^2}^{\infty} \frac{dx}{x\sqrt{1+x^2}}$$

$$42.\int\limits_{0}^{\infty}xe^{-x^{2}}dx$$

**43.** 
$$\int_0^\infty x^3 e^{-x^2} dx$$

$$44. \int_{1}^{\infty} \frac{\arctan x}{x^2} dx$$

$$45.\int_0^\infty \frac{dx}{1+x^3}$$

$$46. \int_{-\infty}^{+\infty} \frac{dx}{\left(x^2 + 1\right)^2}$$

- **47.** For  $p \le 1$ , is  $\int_1^\infty \frac{\ln x}{x^p} dx$  convergent? (Hint:  $\frac{\ln x}{x^p} \ge \frac{1}{x^p}$  for  $x \ge e$ )
- **48.** For what values of k are the integrals  $\int_2^\infty \frac{dx}{x^k \ln x}$  and  $\int_2^\infty \frac{dx}{x(\ln x)^k}$  convergent?
- **49.** For what values of *k* is the integral  $\int_a^b \frac{dx}{(b-x)^k}$ , (b < a) convergent?
- **50.** Show that  $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$  if f(x) is even and  $\int_{-a}^{a} f(x) dx = 0$  if f(x) is odd.
- **51.** Show that  $\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx = \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx$
- **52.** Show that  $\int_{0}^{1} \frac{dx}{\arccos x} = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$
- **53.**  $\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx$
- **54.** The **Laplace Transformation** of the function f is defined by the improper integral

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_{0}^{+\infty} e^{-st} f(t) dt.$$

Show that for constant a (with s - a > 0)

- $\mathbf{a.} \mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a} \ \mathbf{b.} \mathcal{L}\left\{a\right\} = \frac{a}{s} \ \mathbf{c.} \mathcal{L}\left\{t\right\} = \frac{1}{s^2} \ \mathbf{d.} \mathcal{L}\left\{\cos at\right\} = \frac{s}{s^2 + a^2}$
- $\mathbf{e.} \mathcal{L}\left\{\sin at\right\} = \frac{a}{s^2 + a^2}$
- **55.** Find the first quadrant area under the curve  $y = e^{-2x}$  (answer:  $\frac{1}{2}$ )
- **56.** Let  $\mathcal{R}$  be the region in the first quadrant under xy = 9 and to the right of x = 1. Find the volume generated by revolving  $\mathcal{R}$  about the x-axis. (answer:  $81\pi$ )
- **57.** Derive a formula  $V = \frac{1}{3}\pi r^2 h$  for the volume of a right circular cone of height h and radius of base r.
- **58**. Let  $\mathscr{R}$  be the region above the curve  $y = x^3$  under the line y = 1 and between x = 0 and x = 1. Find the volume generated by revolving  $\mathscr{R}$  about a). x-axis, b). about y-axis.

(answer: a). 
$$\frac{6}{7}\pi$$
 , b).  $\frac{3}{5}\pi$  )

- **59**. Find the area of the region between  $y = x^3$  and the lines y = -x and y = 1
- **60**. Find the area of the region bounded by the curve  $y = \sin x$ ,  $y = \cos x$  and x = 0 and  $x = \pi/4$  (answer:  $\sqrt{2}-1$ )

- **61.** Find the area of the region bounded by parabolas  $y = x^2$  and  $y = -x^2 + 6x$ . (Answer: 9)
- **62.** Find the area of the region bounded by the parabola  $x = y^2 + 2$  and the line y = x 8. (answer:  $\frac{125}{6}$ )
- **62.** Find the area of the region bounded by the parabolas  $y = x^2 x$  and  $y = x x^2$ . (Answer:  $\frac{1}{3}$ )
- **62.** Find the arc length of the curve  $y = \frac{x^4}{8} + \frac{1}{4x^2}$  from x = 1 to x = 2 (ans:  $\frac{33}{16}$ )
- **63.** Find the arc length of the curve  $x^{2/3} + y^{2/3} = 4$  from x = 1 to x = 8 (ans: 9)
- **64.** Find the arc length of the curve  $6xy = x^4 + 3$  from x = 1 to x = 2 (ans:  $\frac{17}{12}$ )
- **65.** Find the area inside the cardioid  $r = 1 + \cos \theta$  and outside r = 1 (ans:  $\frac{\pi}{4} + 2$ )
- **66.** Find the area inside the circle  $r = \sin \theta$  and outside the cardioid  $r = 1 \cos \theta$
- **67.** Find the volume generated by revolving the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  about *x*-axis. **Answer:**  $\frac{4}{3}\pi ab^2$

### **Infinite Series**

#### 1. SEQUENCES AND THEIR LIMITS

#### **Sequences**

A sequence  $\{a_n\}$  is a function whose domain is a set of nonnegative integers and whose range is the subset of real number. The functional value  $a_1, a_2, a_3 \dots$  are called **terms** of the sequence and  $a_n$  is called the **nth term**, or **general term** of the sequence.

#### Limit of the sequence

If the terms of the sequence approach the number L as n increases without bound, we say that the sequence converges to the limit L and write

$$L = \lim_{n \to +\infty} a_n$$

#### **Convergent sequence**

The sequence  $\{a_n\}$  converges to the number L, and we write  $L = \lim_{n \to \infty} a_n$  if for every  $\varepsilon > 0$ , there is an integer N such that  $|a_n - L| < \varepsilon$  whenever n > N. Otherwise, the sequence diverges.

#### **Limit Theorem for Sequences**

If 
$$\lim_{n\to\infty} a_n = L$$
 and  $\lim_{n\to\infty} b_n = M$ , then

1. Linearity Rule: 
$$\lim_{n\to\infty} (ra_n + sb_n) = rL + sM$$

2. Product Rule: 
$$\lim_{n\to\infty} (a_n b_n) = LM$$

3. Quotient Rule: 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$$
 provided  $M \neq 0$ 

4. Root Rule: 
$$\lim_{n\to\infty} \sqrt[m]{a_n} = \sqrt[m]{L}$$
 provided  $\sqrt[m]{a_n}$  is defined for all  $n$  and  $\sqrt[m]{L}$  exists.

#### **Example:**

Find the limit of the convergent sequences

a/. 
$$\left\{ \frac{2n^2 + 5n - 7}{n^3} \right\}$$
 b/.  $\left\{ \frac{3n^4 + n - 1}{5n^4 + 2n^2 + 1} \right\}$  c/.  $\left\{ \sqrt{n^2 + 3n} - n \right\}$ 

#### Limit of a sequence from the limit of a continuous function

The sequence  $\{a_n\}$ , let f be a continuous function such that  $a_n = f(n)$  for n = 1, 2, 3, ... If  $\lim_{x \to \infty} f(x)$  exists and  $\lim_{x \to \infty} f(x) = L$ , the sequence  $\{a_n\}$  converge and  $\lim_{n \to \infty} a_n = L$ .

1

**Example:** Given that the 
$$\left\{\frac{n^2}{1-e^n}\right\}$$
 converges, evaluate  $\lim_{n\to\infty}\frac{n^2}{1-e^n}$ 

**Bounded, Monotonic Sequences** 

| Name                      | Condition                                               |
|---------------------------|---------------------------------------------------------|
| Strictly increasing       | $a_1 < a_2 < \ldots < a_{k-1} < a_k < \ldots$           |
| Increasing                | $a_1 \le a_2 \le \ldots \le a_{k-1} \le a_k \le \ldots$ |
| Strictly decreasing       | $a_1 > a_2 > \ldots > a_{k-1} > a_k > \ldots$           |
| Decreasing                | $a_1 \ge a_2 \ge \ldots \ge a_{k-1} \ge a_k \ge \ldots$ |
| Bounded above by $M$      | $a_n \le M \text{ for } n = 1, 2, 3,$                   |
| Bounded below by <i>m</i> | $m \le a_n \text{ for } n = 1, 2, 3,$                   |
| Bounded                   | If it is bounded both above and below                   |

#### 2. INFINITE SERIES; GEOMETRIC SERIES

An infinite series is an expression of the form

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

and the nth partial sum of the series is

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

The series is said to **converge with sum** S if the sequence of partial sums  $\{s_n\}$  converges to S. In this case, we write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = S$$

If the sequence  $\{S_n\}$  does not converge, the series  $\sum_{k=1}^{\infty} a_k$  diverges and has no sum.

**Example:** Show that the series  $\sum_{k=1}^{\infty} \frac{1}{k^2 + k}$  converges and find its sum.

**Solution:** 

We have 
$$\frac{1}{k^2 + k} = \frac{1}{k} - \frac{1}{k+1}$$
. Then
$$S_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

**Example:** Prove that the series convergent and find its sum

**a.** 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
 **b.**  $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$  **c.**  $\sum_{k=1}^{\infty} \frac{1}{2^k}$ 

#### **Geometric Series**

A geometric series is an infinite series in which the ratio of successive term in the series is constant. If this constant ratio is r, then the series has the form

$$\sum_{k=0}^{\infty} ar^{k} = a + ar + ar^{2} + ar^{3} + \dots + ar^{n} + \dots, a \neq 0$$

#### **Geometric Theorem**

The geometric series  $\sum_{k=0}^{\infty} ar^k$  with  $a \neq 0$  diverges if  $|r| \geq 1$  and converges if |r| < 1 with

$$\operatorname{sum} \sum_{k=0}^{\infty} a r^k = \frac{a}{1-r}$$

#### **Proof:**

The nth partial sum of the geometric series is  $S_n = a + ar + ar^2 + \dots + ar^{n-1}$ .

Then, 
$$rS_n = ra + ar^2 + ar^3 + \dots + ar^n$$
  

$$\Rightarrow rS_n - S_n = ar^n - a$$

$$\Rightarrow S_n = \frac{a(r^n - 1)}{r - 1}, r \neq 1$$
If  $|r| > 1 \Rightarrow r^n \xrightarrow{n \to \infty} \infty \Rightarrow \lim_{n \to \infty} S_n = \infty$ 
If  $|r| < 1 \Rightarrow r^n \xrightarrow{n \to \infty} 0 \Rightarrow \lim_{n \to \infty} S_n = \frac{a}{1 - r}$ 

#### THE INTEGRAL TEST, p-series

#### **Divergent Test**

If  $\lim_{k\to\infty} a_k \neq 0$ , then the series  $\sum a_k$  must diverge.

#### **Proof:**

Suppose the sequence of partial sums  $\{S_n\}$  converges with sum L, so that  $\lim_{n\to\infty}S_n=L$ . Then we also have  $\lim_{n\to\infty}S_{n-1}=L$ .

We have  $S_k - S_{k-1} = a_k$ , and then it follows that

$$\lim_{k\to\infty}a_k=\lim_{k\to\infty}\bigl(S_k-S_{k-1}\bigr)=L-L=0$$

We see that if  $\sum a_k$  converges, then  $\lim_{k\to\infty}a_k=0$ . Thus, if  $\lim_{k\to\infty}a_k\neq 0$ , then  $\sum a_k$  diverges.

#### **Example:**

$$\sum_{k=1}^{\infty} \frac{k}{k+1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{k}{k+1} + \dots$$
 Diverges since 
$$\lim_{k \to \infty} \frac{k}{k+1} = 1 \neq 0$$

#### **The Integral Test**

If  $a_k = f(k)$  for k = 1, 2, 3, ... where f is a positive continuous and decreasing function of x for  $x \ge 1$  then

$$\sum_{k=1}^{\infty} a_k \text{ And } \int_{1}^{\infty} f(x) dx$$

either both converge or both diverge.

**Example:** Test the series  $\sum_{k=1}^{\infty} \frac{1}{k}$  for convergence

#### **Solution:**

We have  $f(x) = \frac{1}{x}$  is a positive, continuous and decreasing for  $x \ge 1$ .

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} [\ln b] = \infty, \text{ implying that } \int_{1}^{\infty} \frac{1}{x} dx \text{ diverges.}$$

Hence  $\sum_{k=1}^{\infty} \frac{1}{k}$  diverges.

Example: Investigate the following series for convergent

$$1. \sum_{k=1}^{\infty} \frac{k}{e^{k/5}}$$

2. 
$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

1. 
$$\sum_{k=1}^{\infty} \frac{k}{e^{k/5}}$$
 2.  $\sum_{k=1}^{\infty} \frac{1}{k^2}$  3.  $\frac{1}{e} + \frac{2}{e^4} + \dots + \frac{k}{e^{k^2}} + \dots$ 

#### p-series

A series of the form

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$

where p is a positive constant, is called a p-series.

**Note:** The harmonic series is the case where p = 1.

#### Theorem, the p-series test

The p-series  $\sum_{k=1}^{\infty} \frac{1}{k^p}$  converges if p > 1 and diverges if  $p \le 1$ .

**Proof:** 

Let 
$$f(x) = \frac{1}{x^p}$$
  $f'(x) = -\frac{px^{p-1}}{x^{2p}}$  then  $f'(x) < 0$  if  $p > 0$ 

Hence  $f(x) = \frac{1}{x^p}$  is continuous, positive and decreasing  $x \ge 1$  and p > 0.

For p = 1, the series is harmonic, that is it diverges

For p > 0 and  $p \ne 1$  we have:

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{b^{1-p} - 1}{1 - p} = \begin{cases} \frac{1}{p - 1}, p > 1\\ \infty, 0$$

That is, this improper integral converges if p > 1 and diverges if 0For p = 0, the series becomes

$$\sum_{k=1}^{\infty} \frac{1}{k^0} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$$

For p < 0, we have  $\lim_{k \to \infty} \frac{1}{k^p} = \infty$ , so the series diverges by the convergence test.

Hence, a p-series converges only when p > 1.

**Example:** Test each of the following series for convergence

$$\mathbf{a.} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k^3}}$$

$$\mathbf{b.} \ \sum_{k=1}^{\infty} \left( \frac{1}{e^k} - \frac{1}{\sqrt{k}} \right)$$

**Solution:** 

- **a.**  $\sqrt{k^3} = k^{3/2}$ . So p = 3/2 > 1 and the series converges.
- **b.** We have  $\sum_{k=0}^{\infty} \frac{1}{e^k}$  converges, because it is a geometric series with  $|r| = \frac{1}{e} < 1$ .

And  $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$  diverges because it is a p-series with  $p = \frac{1}{2} < 1$ 

Hence 
$$\sum_{k=1}^{\infty} \left( \frac{1}{e^k} - \frac{1}{\sqrt{k}} \right)$$
 diverges.

#### 4. COMPARISON TEST

#### Direct Comparison Test

Suppose  $0 \le a_k \le c_k$  for all  $k \ge N$  for some N. If  $\sum_{k=1}^{\infty} c_k$  converges, then  $\sum_{k=1}^{\infty} a_k$  also converges.

Let  $0 \le d_k \le a_k$  for all  $k \ge N$  for some N. If  $\sum_{k=1}^{\infty} d_k$  diverges, then  $\sum_{k=1}^{\infty} a_k$  also diverges.

**Example:** Test the series  $\sum_{k=1}^{\infty} \frac{1}{3^k + 1}$  for convergence.

**Solution:** 

We have 
$$3^k + 1 > 3^k > 0$$
 for  $k \ge 1$ . Then  $0 < \frac{1}{3^k + 1} < \frac{1}{3^k}$ . Since  $\sum_{k=1}^{\infty} \frac{1}{3^k}$  converges,

it implies that  $\sum_{k=1}^{\infty} \frac{1}{3^k + 1}$  converges.

**Example:** Test for convergence the following series

**a.** 
$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{k} - 1}$$
 **b.**  $\sum_{k=1}^{\infty} \frac{1}{k!}$ 

**b.** 
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$

Suppose  $a_k > 0$  and  $b_k > 0$  for all sufficiently large k and that  $\lim_{k \to \infty} \frac{a_k}{b_k} = L$  where L is

finite and positive  $(0 < L < \infty)$ . Then  $\sum a_k$  and  $\sum b_k$  either both converge or both diverge.

**Example:** Test the series  $\sum_{k=1}^{\infty} \frac{1}{2^k - 5}$  for convergence.

**Solution:** 

We see that  $\sum \frac{1}{2^k}$  is a convergent series for it is the geometric series with

$$|r| = \frac{1}{2} < 1$$
. Moreover

$$\lim_{k \to \infty} \frac{\frac{1}{2^k - 5}}{\frac{1}{2^k}} = \frac{2^k}{2^k - 5} = 1$$

Hence  $\sum \frac{1}{2^k - 5}$  is convergent too.

#### The zero-infinity limit comparison test

Suppose  $a_k > 0$  and  $b_k > 0$  for all sufficient large k.

If 
$$\lim_{k\to\infty} \frac{a_k}{b_k} = 0$$
 and  $\sum b_k$  converges, then  $\sum a_k$  converges

If 
$$\lim_{k\to\infty} \frac{a_k}{b_k} = \infty$$
 and  $\sum b_k$  diverges, then  $\sum a_k$  diverges.

#### 5. THE RATIO TEST AND THE ROOT TEST

**Theorem:** Given the series  $\sum a_k$  with  $a_k > 0$ , suppose that  $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = L$ 

The ratio test states the following:

If L < 1, then  $\sum a_k$  converges

If L > 1, then  $\sum a_k$  diverges

If L=1, then the test is inconclusive

**Example:** Test the series  $\sum_{k=1}^{\infty} \frac{2^k}{k!}$  for convergence.

**Solution:** 

Let 
$$a_k = \frac{2^k}{k!}$$
 and note that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{\frac{2^{k+1}}{(k+1)!}}{\frac{2^k}{k!}} = \lim_{k \to \infty} \frac{k! 2^{k+1}}{(k+1)! 2^k} = \lim_{k \to \infty} \frac{2}{k+1} = 0 < 1 \text{ and the series is}$$

convergent.

**Example:** Find all number x > 0 for which the series

$$\sum_{k=1}^{\infty} k^3 x^k = x + 2^3 x^2 + 3^3 x^3 + \cdots$$

converges.

**Solution:** 

$$L = \lim_{k \to \infty} \frac{(k+1)^3 x^{k+1}}{k^3 x^k} = \lim_{k \to \infty} \left(\frac{k+1}{k}\right)^3 x = x$$

Thus, the series converges if L = x < 1 and diverges if x > 1. When x = 1, the series becomes  $\sum_{k=1}^{\infty} k^3$ , which diverges by divergence test.

#### Root Tests

Given the series  $\sum a_k$  with  $a_k \ge 0$ , suppose that  $\lim_{k \to \infty} \sqrt[k]{a_k} = L$ . The root test states the following:

If L < 1, then  $\sum a_k$  converges

If L > 1 or L is infinite, then  $\sum a_k$  diverges.

If L=1, the root test is conclusive.

**Example:** Test the series  $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^k}$  for convergence.

**Solution:** 

Let 
$$a_k = \frac{1}{(\ln k)^k}$$
 and note that

$$L = \lim_{k \to \infty} \sqrt[k]{a_k} = \lim_{k \to \infty} \sqrt[k]{(\ln k)^{-k}} = \lim_{k \to \infty} \frac{1}{\ln k} = 0 < 1$$
. Then, the series converges.

**Example:** Test the series  $\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^{k^2}$  for convergence.

**Example:** Test the series  $\sum_{k=0}^{\infty} \frac{k!}{1 \cdot 4 \cdot 7 \cdots (3k+1)}$  for convergence.

#### 6. ALTERNATING SERIES; ABSOLUTE AND CONDITIONAL CONVERGENCE

There are two classes of series for which the successive terms alternate in sign, and each of these is appropriately called alternating series:

$$\sum_{k=1}^{\infty} (-1)^k a_k = -a_1 + a_2 - a_3 + \cdots$$

$$\sum_{k=1}^{\infty} (-1)^{k+1} = a_1 - a_2 + a_3 - a_4 + \cdots$$

where  $a_k > 0$  in both cases.

#### **Alternating Series Test**

An alternating series  $\sum_{k=1}^{\infty} (-1)^k a_k$  or  $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$  where  $a_k > 0$ , for all k, converges if both of the following two conditions are satisfied:

$$1/. \lim_{k \to \infty} a_k = 0$$

 $2/.\{a_k\}$  is decreasing sequence; that is,  $a_{k+1} \le a_k$  for all k.

**Example:** Determine if the following series is convergent or divergent.  $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k}$ 

**Solution:** 

We have  $\lim_{k\to\infty}b_k=\lim_{k\to\infty}\frac{1}{k}=0$  and  $b_k=\frac{1}{k}>\frac{1}{k+1}=b_{k+1}$ . Hence the series is

convergent.

**Example:** Investigate the series  $\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{k^2 + 5}$ 

**Example:** Determine if the following series is convergent or divergent.  $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$ 

#### **Absolutely And Conditionally Convergent Series**

The series  $\sum a_k$  is **absolutely convergent** if the related series  $\sum |a_k|$  converges. The series  $\sum a_k$  is **conditionally convergent** if it converges but  $\sum |a_k|$  diverges.

#### The Generalized Ratio Test

For the series  $\sum a_k$ , suppose  $a_k \neq 0$  for  $k \geq 1$  and that

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L$$

where L is a real number or  $\infty$ , then

If L < 1, then the series  $\sum a_k$  converges absolutely and hence converges.

If L > 1 or L infinite, the series  $\sum a_k$  diverges.

If L=1, the test is inconclusive.

**Example:** Determine if each of the following series are absolute convergent, conditionally convergent or divergent.

**a.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 **b.**  $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{n^2}$  **c.**  $\sum_{n=1}^{\infty} \frac{\sin n}{n^3}$ 

#### 7. POWER SERIES

An infinite series of the form

$$\sum_{k=0}^{\infty} a_k (x-c)^k = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \cdots$$

is called a **power series** in (x-c). The number  $a_0, a_1, a_2, ...$  are the *coefficients* of

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \cdots$$

which may be considered as an extension of a polynomial in x.

#### Convergence of a power series

For a power series  $\sum_{k=0}^{\infty} a_k x^k$ , exactly one of the following is true:

- **1.** The series oversees for all x.
- **2.** The series converges only for x = 0
- **3.** The series **converges absolutely** for all x in an open interval (-R, R) and **diverges** for |x| > R. It may either converge of diverge at the endpoints of the interval, x = -R and x = R.

We call the interval (-R, R) the **interval of convergence** of the power series. R is called **the radius of convergence** of the series. If the series converges only for x = 0, the series has radius of convergence R = 0 and if it converges for all x, we say that  $R = \infty$ .

**Example:** Show that the power series  $\sum_{k=1}^{\infty} \frac{x^k}{k!}$  converges for all x.

**Solution:** 

$$L = \lim_{k \to \infty} \left| \frac{\frac{x^{k+1}}{(k+1)!}}{\frac{x^k}{k!}} \right| = \lim_{k \to \infty} \left| \frac{x^{k+1}k!}{(k+1)!x^k} \right| = \lim_{k \to \infty} \frac{|x|}{k+1} = 0$$

Hence the series converges for all x.

**Example:** Determine the convergence set for the power series  $\sum_{k=1}^{\infty} \frac{x^k}{\sqrt{k}}$ 

#### **Solution:**

By the generalized ratio test, we find

$$L = \lim_{k \to \infty} \left| \frac{\frac{x^{k+1}}{\sqrt{k+1}}}{\frac{x^k}{\sqrt{k}}} \right| = \lim_{k \to \infty} \left| \frac{\sqrt{k}}{\sqrt{k+1}} \right| |x| = |x|$$

The power series converges absolutely if |x| < 1 and diverges if |x| > 1.

For x = -1:  $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$  converges by the alternation series test

For 
$$x = 1$$
:  $\sum_{k=1}^{\infty} \frac{(1)^k}{\sqrt{k}}$  diverges

Thus, the given-above power series converges for  $-1 \le x < 1$  and diverges otherwise.

**Example:** Find the interval of convergence for the power series  $\sum_{k=1}^{\infty} \frac{2^k x^k}{k}$ . What is the radius of convergence?

**Example:** Find the interval of convergence of the power series  $\sum_{k=0}^{\infty} \frac{(x+1)^k}{3^k}$ 

#### Term-By-Term Differentiation and Integration Of Power Series

A power series  $\sum_{k=0}^{\infty} a_k x^k$  with radius of convergence R can be differentiated or integrated term by term on its interval of absolute convergence -R < x < R. More specifically, if  $\sum_{k=0}^{\infty} a_k x^k$  for |x| < R, then for |x| < R we have

$$f'(x) = \sum_{k=1}^{\infty} ka_k x^{k-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots$$

and

$$\int f(x) dx = \int \left( \sum_{k=0}^{\infty} a_k x^k \right) dx = \sum_{k=0}^{\infty} \left( \int a_k x^k \right) dx = \sum_{k=0}^{\infty} \frac{a_k}{k+1} x^{k+1} + C$$

**Example:** Let f be a function defined by the power series  $f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$  for all x

Show that f'(x) = f(x) for all x, and deduce that  $f(x) = e^x$ 

**Solution:** 

$$f'(x) = \frac{d}{dx} \left[ 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \right]$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^2}{3!} + \frac{4x^3}{4!} + \cdots$$

$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$= f(x)$$

If we have f'(x) = f(x), then  $f(x) = Ce^x$  and f(0) = C

$$f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
, then  $f(0) = 1 + 0 + \frac{0^2}{2!} + \frac{0^3}{3!} + \cdots = 1$ 

So we obtain C = 1. Therefore  $f(x) = e^x$ .

#### 8. TAYLOR AND MACLAURIN SERIES

#### **Definition:**

If f has derivatives of all orders at a, then we define the **Taylor series** f **about** x = a **to be** 

$$\sum_{0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^{k} = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \dots$$

#### **Definition:**

If f has derivatives of all orders at a, then we define the **Taylor series** f about x = a to be

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x)^{k} = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(k)}(0)}{k!}x^{k} + \dots$$

**Example:** Find the Maclaurin series for  $e^x$ ,  $\cos x$ , and  $\sin x$ 

**Example:** Find the Taylor series about x = 1 for 1/x

# 9. TAYLOR'FOMULA WITH REMAINDER; CONVERGENCE OF TAYLOR SERIES

#### Taylor's Theorem

Suppose that a function f can be differentiated n+1 times at each point in an interval containing the point a, and let

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^k$$

be the nth Taylor polynomial about x = a for f. Then for each x in the interval, there is at least one point c between a and x such that

$$R_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

We can rewrite 
$$f(x) = p_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

then we can write f(x) as

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

and we call it Taylor's formula with remainder.

#### **Convergence of Taylor Series**

The *Taylor series* for f converges to f(x) at precisely those points where the remainder approaches zero; that is,

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \iff \lim_{n \to +\infty} R_n(x) = 0$$

#### **Constructing Maclaurin Series by Substitution**

Sometimes Maclaurin series can be obtained by substituting in other Macluarin series

**Example:** Using the Maclaurin series  $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$   $-\infty < x < +\infty$ 

we can derive the Maclaurin series for  $e^{-x}$  by substituting -x for x to obtain

$$e^{-x} = 1 + (-x) + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \dots \quad -\infty < -x < +\infty$$
  
or  $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \quad -\infty < x < +\infty$ 

**Example:** Obtain the Maclaurin series for  $1/(1-2x^2)$  by using the Maclaurin series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots \qquad -1 < x < 1$$