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Lecture Note Matrix Algebra

Chapter 1

Matrix Algebra

1 Definition

A rectangular array of numbers is called a matrix. Each number is called the
element or entry of the matrix. A Row of a matrix is a horizontal array and a column
is a vertical one. The size or order of a matrix is determined by the number of rows
and columns of that matrix. A matrix is said to be of order or size mxnif it has

m rows and n columns. Ifm =n, the matrix is called the square matrix of order or
sizenxn. Any real number is called a scalar.

There are a number of ways to represent an mxn matrix

a11 a12 N aln
Al %1 a, - a?n :[%]:[%]mn
a, a, - a.

where a; with i=1,2,...,m; j=1,2,...,nare called the elements or the entries of the
matrix.

Example 1
2 4 9] . i .
is a matrix of size 2x3. It has 2 rows and 3 columns.
6 8 1
1 4
2 5/ isa matrix of size 3x2 for it has 3 rows and 2 columns.
|3 6
The matrix
a, &, ...
Ao Ay, Ay ... 8y,
a a a

ml m2 mn

is called a square matrix of size nxn or simply n.

The element a; where i = jform a main diagonal of the matrix.

The matrix
by,
b
B=| 2
B
is an mx1matrix. Such a matrix is also called a column vector as for
C :[Cll Cp - Cln]

a 1xnmatrix is called a row vector.
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2 Some other matrices with special properties
Zero matrix or null matrix A matrix whose all elements equal zero.

Example 1
0 0O
o - 0 0O
4x3 T 0 0 0
0 0O
Upper triangular matrix A square matrix whose elementsa; =0forall i> j.
d; &, 8y,
Ay Az
0
L A,

Lower Triangular Matrix A square matrix whose elements a; =0foralli < j.

a'll
a'12

a‘nl

Diagonal matrix A square matrix whose elements a; =0foralli= j. Itis
both upper triangular and lower triangular matrix.

a11

a'22

a‘n2

0

a

nn

a‘22

0

Scalar matrix A diagonal matrix whose a; = Afor i=j.

A

a

nn

A

Example 2

o O b

o b~ O

0
0 |is a scalar matrix.
4
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Identity matrix A scalar matrix whose a; =1for alli = j. An identity matrix
of size nxnis commonly denoted by 1, .

Example 3
1 00
I—1 0 I,={0 1 O
2_0 1’ 3
0 01

Symmetric Matrix A matrix A= [aiJ ) IS symmetric to its main diagonal if

nx

a; =a;fori=12,..,nandj=12,..,n.
Example 4

>

Il
U o
o w o

5
6 | is a symmetric matrix.
2

3 Equality between two matrices
Let A=[aij]and B =[bij]. A=Bifandonly ifa; =b,forall i andj .
Example

Xy -1 5| . .
LetA= , B= . Giventhat A=B. Find a,b,x andy?
6 3 a b

4 Arithmetic Operations
Addition Let A= [aij ] andB = [bij ,then C=A+B= [cij] nWhere

mx

c; =a; +b;foralliandj.

Example 1
(1 -2 3 0 2 1
Let A= andB = . Then
2 -1 4 13 -4
AL B [1+0 —2+2 3+1| [1 0 4
TPT241 143 4+(-4)] 7|3 2 0

Properties of Matrix Addition
If the matrix A, B,C, and the null matrix O are of the same size, then

i. A+B=B+A(Commutative Law)

ii. A+(B+C)=(A+B)+C (Associative Law)

iii. A+O=0+A=A

iv. Each matrix Ahas a negative, —A, such that A+(-A)=0

Scalar Multiplication Let A=[a; | and r be areal number. Then the
scalar multiplication of the matrix A and the scalar r
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is a matrix C such that C = ¢, | where ¢, =ra, for

all iandj.

Example 2
_2{4 -2 —3}{(—2)(4) (=2)(-2) (—2)(—3)}{ -8 4 6}
7 -3 2] [(-2)(7) (-2)(-3) (-2)(2)| [-14 6 -4
Properties of Scalar Multiplication
Le r and s be real numbers and A,and B be matrices, then

i, r(sA)=(rs)A

ii. (r+s)A=rA+sA

iii. r(A+B)=rA+rB

iv. A(rB)=r(AB)=(rA)B
The proof (Exercises)

Example 3
3 2 1
. 4 2 3
Consider A= ,B={2 0 -1},then
2 -3 4
0 1 2
12 6 9 24 12 18
2(3A):2 = =6A
6 -9 12 12 -18 24
We also have
6 -4 2
4 2 3 32 -10 16
A(ZB)= 4 0 -2|= =2(AB)
2 -3 4 0 0 26
0 2 4

Dot Product The dot product A-B of a 1xnrow vector
A: [al a2 e an]
and an nx1 column vector

b,

is defined as

by
b, n
AB:[a1 az an] :2 =a1b1+a2b2+...+anbnzzakbk
' k=1
b

Example 4
-4
Dot product of A=[-2 1 —5]and B=| 3|is defined by
-1
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4
A-B=[-2 1 -5] 3
-1

=(=2)(=4)+(1)(3)+(-5)(-1)

=8+3+5=16

Matrix Multiplication Let A=[a;| andB=|b, ]nxp , then the
product AB=C =[c¢; | . Where

n
G = Z aikbkj
k=1

=ayby; +a,b,; +---+a,b,

in™~nj

That is, the matrix product AB is a matrix whose element at (i, j) is the dot

product of row i of the matrix Aand column j of the matrix B .
Example 5

2 10 1
Let A= 1 1 1|andB=|0 1|.FindAB.
-1 4 3 1 3

Solution

(62 BN S)

1 -
-1 4 3|f@l3| |2 12

Properties of Matrix Multiplications
Let A, B,and C be matrices, then

i. A(BC)=(AB)C
ii. (A+B)C=AC+BC
iii. C(A+B)=CA+CB

Example 6
0 2
2 -1 10
. 5 2 3 2 -3 0
Consider A= ,B=10 2 2 2landC= , then
2 -3 4 0 0 3
3 0 -1 3
0
11 0 2
2 -1 0 3 7
2 -3 0
BC=|0 2 2 2 =8 -4 6
0 0 3
3 0 -1 3 9 3 3
12 10

2 -3 4 12 30

0 3 7

5 2 3 43 16 56
A(BC)= 8 —4 6|=
3
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2 -1 10
5 2 3 19 -1 6 13
AB{ }0 2 2 [ }
2 -3 4 16 -8 -8 6
3 -1 3
1 0 2
19 -1 6 13|(|2 -3 0 43 16 56
(AB)C= =
16 -8 -8 6|0 0 3 12 30 8
2 10
Hence,
A(BC)=(AB)C.
Example 7
2 2 3 00 1 1o
If we have Az{ },B:[ },andC: 2 2|, then
3 -1 2 2 3 -1
3 1
2 2 4
A+B=
5 2 1
We obtain
0
2 2 4 18 0
(A+B)C={ } 2 2 ={ }
5 2 1 12 3
3 -1
_ 11 1 -
2 2 3 15 1
3 -1 2 7 -4
L __ _1_ L
[0 0 1] 3 -1
2 3 -1 5 7
L __3 _1_ L
15 1 -1 18 0
7 -4 5 7 12 3
Hence,

(A+B)C=AC+BC.

Transpose of a Matrix

&; 8, &
A a?l a.22 a.Zn
aml am2 a'mn
Example 8

If A=]a; |isan mxnmatrix, then the transpose of

Ais AT :[aji]which is an nxm matrix. Thus the

transpose of A is obtained from A by interchanging
the rows and columns of A. We obtain

a; ay - Ay

a v a
,then AT = a?z 2 m2
a’ln a2n o a'mn
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-3 4 -3 2
IfA= .then AT =
2 7 47

i} 1 -3
12 -1 )
IfB= ,then B' =| 2 2
32 7
L 17
13 1 2 -1
BT =| 2 2 ,men(Bszz -B
L - 32 7

Properties of transpose
Let sbe ascalar and A, and B be matrices. Then,

(M). (A7) =A

(ii). (A+B) = A" +B'
(iii). (AB) =BT AT
(iv). (sA)T =sA’

Example 9
Let
1 2 3 —
= and B = , then
-2 0 1 -1
1 -2 3 3
A"=/2 O0landB"=|-1 2
3 1 2 -1
and also,

4 1 5
A+B= and hence (A+ B)T =
1 2 0

[@ 2 I SEN N
O N -

And we see that

1 2] [3 3] [41
AT+B'=|2 0[+-1 2|=|1 2|=(A+B)
3 1/ |2 -1 |50

Example 10
0 1
1 3
LetA= andB=|2 2], then
2 -1
-1
o 1| _
1 3 2 12 5
AB = 2 2=
2 -1 3 7 -3
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L1 o3 2T : 02 3
AT = =3 -1|And B"=|2 2| =
2 -1 3 12 -1
2 3 -1
02 3]} °|
BTA" = 3 -1|= =(AB)'
12 -1 -3
Remark

a. If a and bare real numbers, then ab=0ifand only if a=00r b=0, but
this is not true if A and B are matrices.

Example 11
Consider

1 2 4 -6 .
A= and B = are not zero matrices, but
2 4 -2 3

1 2| 4 -6 00
AB = =
s o o)
b. If a,b,and care real numbers such that ab = ac then b =c; that is, we can

cancel out a leaving b = c, but this is not true in the case where
A, B,and C are matrices.

Example 12
Consider

1 2 2 1 -2 7
A= ,B= and C =
2 4 3 2 5 -1
we obtain

8 5
AB=AC = but B=C.
16 10

c. Suppose that Ais a square matrix. If p is a positive integer then we define

AP =A-A-.-.. A If Aisasquare nxnmatrix, then it is defined
that A’ =1 .

d. Let p and g be nonnegative integers and A be a square matrix. Then
APAY = A" and (AP)' = AP,

e. IfFA" = A, then Ais a symmetric matrix.

f. If AT=—A, then Ais called a skew symmetric matrix.

Example 13
0 2 3

B=[-2 0 -4 ]|isaskew symmetric matrix.
-3 4 0

5 Nonsingular Matrix
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A square nxnmatrix A is said to be nonsingular or invertible if there is another
nxnmatrix B such that

AB=BA=1,
In this case the matrix B is called the inverse of Aand is commonly denoted by
A 'rather than B . Otherwise, the matrix Ais called singular or noninvertible.

Remark
i. To verify that B is an inverse of A, we need only verify that AB =1 .

Example 1

2 3 -1 3 . ,
LetA= » 9 and B = L . Since AB =BA =1,, we conclude that B is

the inverse of A.
ii. The inverse of a matrix, if it exists, is unique.

Proof
Let B and C be inverses of A. Then AB=BA=1, and AC=CA=1,

We then have B=BI =B(AC)=(BA)C=1C=C

Because of this uniqueness, we write the inverse of a nonsingular matrix A as A™.
Thus

AAT = ATA=1

1 2
A=
B
b
If Alexists, let A™ = {: d} . Then we must have
1 2)[a b] [1 0
3 4flc d| |0 1
a+2c b+2d _ 10
3a+4c 3b+4d| |0 1

Equating corresponding entries of these two matrices, we obtain
a+2c=1 and b+2d =0

3a+4c=0  3b+4d =1
Then a=-2,c=3,b=%andd=-1

Moreover, since the matrix
[a b [—2 1}
c d] [ -4
also satisfies the properties that

TR

we conclude that A is a nonsingular and that

Example 2
Consider

so that
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Example 3
Let

If Aexists, let

Then we must have

wooly 2 e

a+2c b+2d 10
{2a+4c 2b+4d}={0 J
Equating corresponding entries of these two matrices, we obtain
{ a+2c=1 n { b+2d =0
2a+4c=0 2b+4d =1

we cannot find a,b,c, and d . So our assumption that A exists is incorrect. Thus,
Ais singular.

so that

Remark:
i. If Aand B are both nonsingular nxnmatrices, then AB is nonsingular and
(AB)" =BA™
Proof
We have (AB)(B*A™)=A(BB)A™ =(Al,)A™ = AA™ =1, . Similarly,
(B‘lA‘l)(AB) =1,. Therefore, AB is nonsingular. Since the inverse of a
matrix is unique, we conclude that (AB)_l =B'A™
More generally, If A, A,,..., A are nxnnonsingular matrices, then
AA,...A is nonsingular and (AA,..A )" = AAL AT
ii. If Aisanonsingular matrix, then A™is nonsingular and (A’l)_1 =A
iii. If A is a nonsingular matrix, then AT is nonsingular and (A’l)T = (AT )_1.
Example 4

1 2 =2 1 T —2
If A= ,then A= 1 |and (A’l) =
3 4

N~ NN w

10
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(a7

N~ N w

6 Echelon Form of a Matrix
Definitionl
An mxnmatrix A is said to be in reduced row echelon form if it satisfies the
following properties
i. All zero rows, if there are any, appear at the bottom of the matrix
ii. The first entry from the left of a nonzero row is a 1. This entry is called a
leading one of its row.
iii.For each nonzero row, the leading one appears to the right and below any
leading one’s in preceding rows.
iv. If a column contains a leading one, then all other entries in that column are zero.

A matrix in reduced row echelon form appears as a staircase (echelon) pattern of
leading 1s descending from the upper left corner of the matrix.
An mxnmatrix satisfying properties i, ii, and iii is said to be in row echelon form.

Example 1
The following are matrices in reduced row echelon form

0(1)3 00 40 (Do 00 -2 4]
L0000 30 0o@®o o0 4 8
loooo(n 2o B={0 0 0D 7 -2
00000 0 0000 0 0
0000 0 0
@00 200 1
c=j0 Do D=0 0 D2 3
0 0
00000
Definition2:

An elementary row (column) operation on a matrix A is any one of the following
operations:

a. Type I: Interchange any two rows (columns)

b. Type I1: Multiply a row (column) by a nonzero number.

c. Type I11: Add a multiple of one row (column) to another.

Example 2
Let
0 01 2
A=l2 3 0 -2
3 36 -9

Interchange row 1 and row 3, we obtain

11
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3 36 -9
B=12 3 0 -2
0 01 2

Multiplying the 3" of A by%, we obtain

001 2
C=|2 3 0 -2
112 -3
Adding (—2)times row 2 of A to row 3 of A, we obtain
0O 0 1 2
D= 2 3 0 -2
-1 -3 6 -5

Definition3:
An mxnmatrix B is said to be row (column) equivalent to an mxnA if B can be
obtained by applying a finite sequence of elementary row (column) operations to A.

Example 3
Let
[1 2 3 4]
A=l2 1 3 2
11 -2 2 3]
If we add 2 times row 3 of A its second row, we obtain
1 2 3 4
B=|4 -3 7 8
11 -2 2 3]
so B is row equivalent to A.
Interchanging rows 2 and 3 of B, we obtain
1 2 43
C=l1 -1 2 3
4 -3 7 8

so C is row equivalent to B.

7 Finding the Inverse of A matrix by Row Operations
If A is a nonsingular matrix, then by applying row operations we can transform matrix

[ Al1']to matrix[ 1|B]. In this case B is the inverse of A. If the process cannot lead to
matrix| 1|B ], we conclude the matrix A is singular. We summarize the process by the

diagram below.
Row Operations

[Al] > ['\f]

The inverse of A

12
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Example 4

1 3
Find the inverse of A=
2 4

Solution
We write the matrix [A| I ] then applying row operations as follows

1 310

[2 40 J
310

B —2‘—2 1} RI™ = (~2)RP" + RO

1 0
1
1 _E Rznew:_lR;Id

2
Rinew — (_3) R;Id + old

— O = W
|
N

Nl N|w

[EEN
|

N Njw
I
1
O
~ O
I
Il
-

——
N
-l>t:;oI
I

1
O -
— O
[
Il

-

2 3
Hence A™ = 2
1 -3
Example 5
1 2 3
Find the inverse of A=|0 2 3
1 2 4
(12 3100
0 2 30 10
1.2 40 0 1
(12310 0
0 2 3010
0 O 1_1 O 1 RneWZ(—l) O|d+Ro|d
(12 04 0 -3]R™=(-3)R"+R’
0 2 03 1 -3 Rnew (3)R0Id+Rold
00 4-10 1
(12 04 0 -3 ,
01033 -3 RS““Z(E)R:"*
00 110 1

Matrix Algebra

13
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1001-1 0]R™=(-2)R™+R™
0 103 § -3
0O 0 1-1 O 1
Hence
1 -1 0
At 3 1 3
2 2 2
-1 0 1
Example 6
1 2 -3
Find the inverseof A=|1 -2 1
5 -2 -3
1 2 3100
1 -2 10 1 0
5 -2 30 0 1
1 2 -3 10 0]
~l0 -4 4-1 1 0
0 -12 12)-5 0 1
1 2 31 0 0]
~l0 -4 4-1 10
0 0 0-2 -3 1
Hence A i; singular. )
Exercises

1. Let
Ai:[l -1 2},%:{2 1 1}andA3:{ 10 1}
3 1 4 0 3 3 -1 1 2
a. Calculate 2A —3A, +4A,
b. Write ¢, A +C,A, +C,A,as a single matrix

2. Let
1 21 -1 1 0 11
A=l2 1 3|,B={ 0 1 1|,C=|2 1,D:{2 1}andE
0 01 1 -1 -1 0 4 13

a. Which pairs of matrices can be added?
b. Calculate 3A+4B

c. Write a matrix F suchthat D+F =D
d. Write a matrix G such that D+G =0,,,

e. Find a matrix H suchthat D+ H =E
3. Let

Matrix Algebra

£

14
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1 3 1 -1 10
A= and B =
31 2 1 4 3

a. Calculate 2A+3B
b. Calculate A—B
c. Find Csothat A~B+C =0
d. What is the size of the matrix 0in c.?
4. Let
1 -4 0 1
A=|2 5land B=|1 5
3 7 2 -1
Calculate A+ B
Write A"and B
Calculate A" +B'

Write (A+B)'
e. Compare (A+ B)T and A" +B'

5. Let
-1 4 3 2
A= and B =
2 -1 10

Verify that (A+B) = A" +B’
6. Find a, b and c such that

e oo

a 3
1 2 -1 3|1 1 9 ¢
[1 4 1 5}0 2={b 19}
12
7. Calculate each of the following when it is defined, given that
1 21 -1 1 0 11
A=l2 1 3|,B=| 0 1 1|C=|2 1andD=[2 1}
0 01 1 -1 -1 0 4 13

a.AB b.AC c¢.CD d.BC e.DC f.BC+CD g. (A+B)C h. AC+BC
8. Let

1 -1 2
1 3 2
A= and B={1 0 3
101
1 10

Calculate AB and B'A'. How are these matrices related? Can you calculate
A'B"?
9. a. Calculate the product

3 5] x
-1 4]y
. . 3X+4y
b. Write as a product of two matrices the 2><1array{ }

2X—Yy
10. Let

15
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2 1 1 2 137 3 -1 8 4
A=1 0 1,B={1 08 2|,C={0 2 3 5
01 -1 1 4 3 6 0 6 -2 9

Calculate ABand AC. If A, B and C are matrices such that AB=AC is it
necessarily true that B=C? Justify your answer.

11. Let
2 0 3 00
D=0 4 O0|,E=|0 -1 0
0 0 -1 0 0 2

a. Calculate D+E
b. Calculate aD+bE where a and b are scalars.
c. Find a matrix B such that D+ B =0,,
12. Let
2 0 0 1
D={0 4 O0|and A=|0
0 0 -1 2
Calculate DA and AD
13. Compute

1
4
1

W N

14.1f A and B are 3x3lower triangular matrices, prove that AB is also 3x3lower
triangular matrix.
110

15.1fA=|0 1 1|.Find A®and A%. Can you suggest a formula for A" ?
0 01

11
16. a.LetA= {0 0}. Calculate A, A®, A*. What is A" for any integern >1?
1 1 2 3 4 H n
b. LetA= 0 1 . Calculate A*, A°, A*. What is A" ?

10 )
c. LetA= L1 . What is A" ?

1 2 3
17. Find the inverse of A:{1 3},8: 0 2 3
2 4 1 2 4

18. Which of the following matrices are singular? For the nonsingular ones find the

inverse

16
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2
1 3 13
1
e las
01
19. Invert the following matrices, if possible
12 -3 1

o

3 1 3
-1 3 -3 2
2 1 2
2 0 1 5
1 0 3
31 -2 5
20. Find the inverse, if it exists, of:
_ 1 1 1 1
1 1 1
1 2 -1 2
1 2 3
1 -1 2 1
0 11
- 1 3 3 2
_ 1 12 1
2
0 -2 0 O
3
1 2 1 =2
1
- 0O 3 2 1

4
21. If Ais a nonsingular matrix whose inverse is [1

1 11
22.1fA* =1 1 2/, findA.
1 11

N N W

1
N

g = =

O© N W -

O
R RN
= N W

N
= O N

D = N

2
} Find A.
1

O L

o w N

Matrix Algebra

=N

17
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Chapter 2
Determinant
1 Definition
Let A= {:“ :12} then the determinant of the matrix A which is denoted by
21 22

det(A)or |Alis defined by det(A) = a,a,, —a,a;, -

Example 1

Find the determinant of A:{ i 2}
Solution

5 6
det(A):‘_l 2‘:(5)(2)—(—1)(6):16

a; 8, da;
The determinantof A=|a,, a,, a,, |isdefined by
aﬁl a32 a33
&, ap
det(A) = a21 a‘22 a23 = a11a22a33 + a12a23a31 + a13a32a21
aSl a32 a33

— 858985 —8,,8,,83; — 3,833y,
Example 2

Find the determinant of

o w N
= N
N P W

Solution
2 1 3

3 2 1=(2)(2)(2)+1)D)(0)+(3)(1)(3)-(0)(2)(3)-(3)(1)(2)-(2) () (1)
012
=8+0+9-0-6-2=9

2 Cofactor Expansions
Definition 1

18
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LetA= [aij } be an nxnmatrix. Let M be the (n—1)x(n—1)sub-matrix of A obtained

by deleting the ith row and jth column of A. The determinant det(Mij ) is called the
minor of a; .

Definition2
Let A= a; |be annxnmatrix. The cofactor A, of a; is defined

as A, =(-1)"" det(M,).

Example 1
3 -1 2
Let A=|4 5 6
7 1 2
Then
det(M12)=4 6‘=8—32=—34 det(M23)=‘3 _W=3+7=1o
7 2 7 1
and
det(M,, ) = _; z‘:—6—10:—16
Also,
A, =(-1)"" det(M,,) =(~1)(-34) = 34
Ay, =(-1)"" det(M,, ) = (~1)(10) = -10
and

3+1

Ay = (_1) det(Msl) - (1)(_16) =-16
If we think of the sign (—1)i+j as being located in position (i, j)of an nxnmatrix, then

the signs form a checkerboard pattern that has a +in (1,1) position.
The patterns for n=3and n=4are as follows:

+ -+ -
+ - 4+
-+ - +
- 4+ -
+ -+ -
+ - 4+
. + - o+
n=
n=4

Definition3
Let A= [aij ] be an nxnmatrix. Then the expansion of det(A) along the ith row is

defined by
dEt(A) = |A| = ailAl + aiz'Aﬁz ot ainAn

and the expansion of det( A)along the jth column is defined by
det(A)=|A=a,A;+a,A +-+a,A,

Example 2
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1 2 2
Evaluate the determinant (3 0 —
2 1 4
By the expansion along row 2, we obtain
1 2 2
3 0 —-1=3-A,+0-A,+(-1)-Ay,
2 1 4
+ 2 _2 2+3 1 2
=3x(-1)*" +(=1)x (-1
S R LI
:(—3)><10—3
=-33
Example 3
1 2 -3
. -4 2 1
Evaluate the determinant 0 0 (Ans: 48).
0 -2 3

3 Adjoint Matrix
Definition
Let A=|a; |bean nxnmatrix. The nxnmatrix adjA called the adjoint of Ais the

matrix whose (i, j) th entry is the cofactor A; ofa, . Thus

A11 A21 Ahl
adjA = A12: A22: sz:
An Ay o A
Example 1
3 -2 1
LetA=|5 6 2|.Find the adjoint of A.
1 0 -3
Solution
We first compute the cofactors of A. We have
a6 2 wD 2 139 6
=(-1)" =-18 =(-1 =17 =(-1 =6
R PN EURNTE
+ _2 l 2+2 3
_ _121 —_6 (-1 =-10
3 -2
_ _1 2+3 :_2
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A31 _ (_1)3+1 2 ;—‘ _ _10 A32 _ (_1)3+2 : ;-‘ _ _1
A, =(-1)"" 2 2‘ =28
Then
-18 -6 -10
adjA=| 17 -10 -1
-6 -2 28
Remark

i. If A=[a; |isan nxnmatrix, then A(adjA) = (adjA) A=det(A)1, .
Example 2

4 2 2
Let be amatrix A={0 1 2|.Then the determinant of A is
1 0 3
1 2 2 2 |2
det(A)=4 -0 + =12+2=14
0 3 0 3 |1
And the cofactors of A are
all 2 1210 2 130 1
=(-1)" =3 A,=(-1 =2 A,=(-1 =-1
Y T CER TR
+. 2 2 2+24 2 2+34 2
—(-1)""* -6 A, =(-1 =10 A, =(-1 =2
+ 2 2 3+24 2 3+34 2
=(-1)"[) =2 A,=(-1 =-8 A,=(-1 =4
Then
3 6 2
adjA=| 2 10 -8
-1 2 4
Therefore
4 2 2| 3 -6 2 3 6 2|4 2 2 14 0 O
A(ade):Olz 2 10 -8|=| 2 10 -8||0 1 2|=/ 0 14 O
1 0 3(|-1 2 4| |-1 2 4|1 0 3 0 0 14
1 00
=1410 1 0 =det(A)I3
0 0 1

ii. If Ais a square matrix whose determinant is different from zero, the inverse
of Acan be found by the formula
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At=— 1 (adja)

det(A)
Example 3
4 2 2
The inverse of A={0 1 2|is
1 0 3
'3 3 1]
3 6 2 14 7 7
A‘lzi 2 10 -8|= l E —i
14 L 2 4 7 7 7
B 112
L7 7 7 ]

iii. The value of a determinant remains unchanged if we add a multiple of a
row (column) to another.

Example 4
1 2 -1 311 2 -1 3
-7 7 -5
2 -3 5 0 -7 7 -5
- () 8 -1 2
-2 4 1 -4 |0 8 -1 2 5 1
3 4 -2 8§ |0 -2 1 -
-7 7 -5
-1 2 8 2 8 -
=8 -1 2/=(-7) -7 -5
1 - -2 -1 |2
-2 1 -
=—7(-1)-7(-4)-5(6)=5
Example 5
4 1 3 6 2
0 -1 1 3 2
Evaluate 8 3 4 9 0| (Answer: -140)
8 2 4 6 4
3 0 -15 2

4 Some More Remarks on Determinants
i. If Alis a square matrix thendet ( A) = det ( AT ) :

Example 1
1 0 3 10 2
A=|0 3 2land A"={0 3 -1
2 -1 1 32 1

det(A)=-13and det(A" )=-13
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Determinant

ii. A is a square matrix. If we multiply a row or a column of a matrix by a real
number u, the determinant of the matrix obtained equals the product of u and

determinant of A.

Example 2
a
=ad -bc
c d
ua ub
] =uad —ubc =u(ad —hc)
a b
. ‘=uad—ubc:u(ad—bc)
uc d

iii. If Aisasquare matrix with two identical rows of columns, then det ( A) =0.

iv. If A isasguare matrix with a zero row or zero column, thendet A=0.
v. If Ais a triangular matrix (upper triangular or lower triangular) then the

determinant of A is the product of the main diagonal elements.

1

vi. If Atexists, then det(A‘l) -
det A

vii. IfAandBare nxn, det(AB)=(det A)(detB)

Example 3

Let
1 4 3 2
A= and B =
-1 2 10

then
1 4 3 2
det A= =6 and detB = =-2
-1 2 10
and
(det A)(detB)=6x(-2)=
w2 }
det( AB =-1
(ne)-| ;-2
Exercises
1. Evaluate the determinants
-2 7 15 -2
a. (Ans: 11) b. (Ans: 20)
-3 5 -5 2

1 3
cl2 4
-5 7

0
-1 (Ans: 18)
2
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3 57 7 9 15 2 -1 3
d| 1 9 0/(Ans:229) e|4 8 3 (Ans:-30) f.[7 2 -3/ (Ans:171)
-2 1 3 2 4 0 1 4 6
2 13 3 2 3 -1 2
g. 5 5[(Ans: 22) h.2 6 4|(Ans:-2) i.l4 0 7|(Ans:
-1 3 1 1 1 1 10 -2
30)
5 31
12 0 15
J. (Ans: -1155)
-4 2 6 3
-3 1 40
2 13
2. LetA=|-1 2 0].
3 -2 1
a. Find adjA b. Compute det A c. A(adjA) = (adjA)A=det(A)l,
6 2 8
3. Like problem 2. for the matrix A={-3 4 1
4 -4 5
4, Use the formula Afl:det (A)(ade) to find the inverse of each of the following
matrices if exists.
4 2 2 4 00 4 1 2
A=|0 1 2 B=|{0 -3 0 C=/0 -3 3
10 3 0 0 2 0 0 2

5. The characteristic equation of a square matrix A is the equation| A—A1|=0.

3 2
Given the matrix A= { 4] the characteristic equation is

3-14 2
-1 4-2
It can be shown that a square matrix always satisfies its characteristic equation.

So, in this case A*>—7A+141 =0.Find the characteristic equation and
demonstrate that the matrix satisfies the equation

|A—/’tl|=‘ =A*-71+14

5 1 2 1 -1 -2 1 -1
A= { 3 J A= 0 1 O A=l 0 1 5
-1 0 1 -1 5

2
6. The equation of line passing through the points(x,, y, ) and (X,, y, ) can be determined
by
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X y 1

x Yy 1=0

X, Y, 1
Find the equation of a line passing through
a. (0,0)and (5,3) b.(0,0) and (-2,2) c.(-1,0)and (5,-3)
d. (41) and (-2,2) e.(-4,3)and(2,1) f (0,7)and(2,-7)

() 39

7. The area of a triangle with vertices (x,, Y, ),(X,. Y, )and (X;, y,)is the absolute value
of

IR 1
E X, Y2 1
X5 Yy 1
Find the area of the triangle with the given vertices
a. (0,0),(3,1),(15) b. (-2,-3),(2,-3),(0,4)

¢ (-12),(-32),(1-5)  d. (-1-2),(-31),(4.-5)
e. (1-2),(-32),(4-3) 1 (11).(-33),(4-3)
9. (5-1).(-3.3).(4-3)

8. Show that

=(y=x)(z=x)(z~y)

2

1
1
1

N < X
N < X
N
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Chapter 3

System of Linear Equations

1 Introduction
What is a linear equation?
An equation of the form

ax +aX, +--+ax =b  (I)
which expresses b in terms of the unknowns x,, x,,..., X, and the constants a,,a,,...,a, is

called a linear equation.
A solution to linear equation (1) is an array of n numbers s, s,,...s, which has the

property that (1) is satisfied when x, =s, X, =S,,..., X, =S, are substituted in (1). For
example x, =2,X, =3,and X, = —4is a solution to the linear equation

6x, —3X, +4%, =-13
because

6(2)-3(3)+4(-4)=-13

More generally, a system of m linear equations in n unknowns x;, X,,..., X, or a linear

system is a set of m linear equations, each in n unknowns. A linear system can
conveniently be written as

apX +oapX, + o+ X, :bl
ayX, + ayX, + -+ + a =b,

2n"'n

(1)

anX + a,X + - + a,X =b
or in matrix form:
a, a, - a, X bl

A 8y ot @y (| % _ bz
aml amz T amn Xn bm
If we let
a, 4, - 4,
_ & 8y Gy, - :
A=| : =" 1, called the coefficient matrix,
aml amZ e a‘mn
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X =| 2|, vector of unknowns

Xn
and
b,
b, | . _
B=| . |, right hand side
bm
then the system can be written as
AX =B
a; ap - A, b1
ay, a, - a,lb
The matrix [ A|B]or | "% o
aml am2 amn bm

System of Linear equations

is called the augmented matrix.

A system of linear equation which has solution is said to be consistent. Otherwise, is said
to be inconsistent.

System of Linear

Equations
[
, /i . ™
Inconsistent [ Consistent ]
. J |
( - \ - - -
No solution Unique Infinitely many
Solution solutions
\_ Y,
If b=b,=---=b, =0 then (1) becomes
agX, +  apX, + + X, =0
ayX, + ayX, + + a,X, =0
anX + appX + + a,X, =0
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It is called a linear homogeneous system.

Note that x, = x, =--- =X, =01s always a solution to a homogeneous system; it is called
the trivial solution. A solution to a homogeneous system in which not all of X, x,,..., X,
are zero is called a nontrivial solution.

2 Finding a Solution to a Linear System
We will discuss three methods for finding the solution to a system.

2.1 Gaussian Elimination and Gauss-Jordan Reduction
Given the system AX = B, to solve this system by Gaussian elimination method, we

transform the augmented matrix| A|B |to the matrix | C|D |which is a row echelon
matrix by using elementary row operations. Then to find the solution of the system from
the corresponding augmented matrix [C| D} we back substitute.

Example 1
Solve the system
XX + 2X, + 3 = 9
2X, — X, + X, = 8
3%, - X = 3
Solution
The corresponding matrix [ A|B ] of the system is
1 2 39
2 -1 8
3 0 -13

By elementary row operations, we transform this matrix to a row echelon matrix[C| D] .

1 2 39| [1 2 2[9]
2 -1 18[~|0 -5 -5-10R™ =(-2)R™ +R;"
3 0 -13] [0 -6 -10|-24 R =(-3)R™ +R}"
1 2 39 ]
~|0 12 R;ewz—éRg'd
0 -6 -10-24
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12 39
~0 1 2
0 0 4-12| Rj™ =6Ry" +Ry"
12 39
~0 1 12
new__i old
0 0 13] R™=-7R;

Using back substitution, we now obtain
X; =3
X,=2-X%X;=-1
X, =9-2X,—-3%X; =2
Hence, the solutionisx, =2,x, =-1, %, =3

Example 2
Solve the system

2%, + X, = X = 2
XX — 2% + X = 2
4, + 2%, — 2%, =
Solution
The corresponding augmented matrix is

2 1 -1-2 1 -2 12
1 -2 2|~ 1 -1-2
4 2 21

O O b O O L &~ N
H
o
|
o
\‘

0 019

We conclude that the system has no solution since the last equation is
0x, +0x, +0x, =19

which can never be satisfied.

Example 3
Solve the system

29



Lecture Note System of Linear equations

X, + 2X, — 3, = -4
{2x1+ X, — 3, = 4
The system is equivalent to
X, + 2X, — 3% = -4
{ =3X, + 3%, = 12
or
XX + 2% — 3 = -4
{ X, — X = —4
then
X, =X, —4
X, = —4—2X, +3X,
=—4-2(x,—4)+3x,
=X, +4
where X, can take on any real numbers. Thus a solution is of the form
X, =r+4,X, =r—4,%x, =r where r is any real number.

Example 4
Consider the linear system

X, +2X, +3%X, =6
2X, —3X, + 2%, =14

X+ X, =Xy =—2
We form the augmented matrix
1 2 3|6
2 -3 2|14
3 1 -1-2

then by row operations we obtain

1 2 3 6( |1 2 3 6| |1 2 36| |1 2 36

1 2 3|6

2 -3 214|~|10 -7 -4 2|~10 1 24|~-/0 1 2/4|~|0 1 24

3 1 -1-2 0 -5 -10|-20 0 -7 42 0 0 1030

0 0 13

From the last augmented matrix, we obtain x, =1, x, = -2, x, =3, the solution of the
system. This solution is obtained by applying Gaussian Elimination Method.

To solve the linear system by Gauss-Jordan reduction, we transform the last matrix

to[ C|D ], which is in reduced row echelon form, by the following steps:
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1 2 36| [1 2 03
0 1 2/4|~|0 1 0|2
00 13] [0 0 13
1 0 o 1]
~l0 1 o2
00 13
Thus the solution isx, =1,x, = -2,x, = 3.

System AX =B,

System of Linear equations

[ A| B} Row operations

Augmented matrix
of the system.

>[C|D]

row echelon matrix

Gaussian Elimination Method

[ A B} Row operations

Augmented matrix
of the system.

Example5  Solve the system
2x + 7y + 15z = -12
4x + 7y + 13z = -10
3X + 6y + 12z =
Remark

Gauss-Jordan Elimination Method

-9

>[C|D

reduced row
echelon matrix

(x=1,y=-2andz=0)

In both Gaussian elimination and Gauss-Jordan reduction, we use row operations only.

Do not try to use any column operations.

Homogeneous Systems

Now we consider a homogeneous system AX =0of m linear equations in n

unknowns.

Example 6

Consider the homogeneous system whose augmented matrix is
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0 2|0
0 3|0
1 4|0
0 00 0 00

Since the augmented matrix is in reduced row echelon form, the solution is seen to be
X, =—=2r,X, =S,%X ==3r,x, =—4r,and X, =r
where r and s are any real numbers.

O O R

0 0
01
00

Remark
I. A homogeneous system of m linear equations in n unknowns always has a
nontrivial solution ifm < n, that is, if the number of unknowns exceeds the
number of equations.
ii. IfAis mxn and AX =0 has only the trivial solution, thenm>n.

Example7
Consider the homogeneous system

X, +X, +X+X,=0

X, +X,=0

X, +2X,+ X% =0
The augmented matrix

is row equivalent to
0 0 10

1
0 10 -10
0 01 10

Hence the solution isx, =—r, X, =r,X; =—r,and x, =r, r any real number.

2.2 Solving the system by the inverse
If Ais annxnmatrix, then the linear system AX = Bis a system of n equations in n

unknowns. Suppose that A is a nonsingular. Then, A'exists and we can multiply

AX =B
by A*on both sides, we obtain
A'(AX)=A"'B
or
X =X=A"B

Moreover, X = A™B is clearly a solution to the given linear system. Thus, if A is
nonsingular, we have a unique solution.

32



Lecture Note System of Linear equations

Example 8
2x — 3y + 4z = 9
Consider the systems x — 2y — z = 8
y + 52 =17
The matrix equation corresponding to the system is
2 -3 4| «x 9
1 -2 -1jly|=|8
0 1 5]z |7
2 -3 4] [ x] 9
Let A=|1 -2 -1|,X=|y|andB=|8
0 1 5 | Z| 7
-9 19 11
SinceA'=|-5 10 6|, the solution to the system is
1 -2 -1
-9 19 11}9 22
X=A'B=|-5 10 6|/ 8|=|-14
1 -2 -1}|7 43
Example 9
X - X o+ X o=k
Solve the system 2%, — X = Kk,
2x, + 3X, = k,
For a. k =1k, =1k, =1 b. x, =3k,=1k;=4 c. k,=-5k, =2k, =-3.

2.3 Cramer’s Rule
Suppose we have
anX T+ oapX, + oo+ X, :bl

ayX, + ,X, + 0+ X, :bz

ay X, + a,X, + - + a.x, =b
a linear system of n equations in n unknowns. Let A= [aij } be a coefficient matrix.
If det A= 0 then the system has a unique solution
_ det(A) . - det(A,) k- det(A,)
det(A)"° det(A)" " det(A)
where A is a matrix obtained from A by replacing column i of A with right hand side
vector.
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Example 10
2x, — 3, = 7
Consider the system{ % X2
3% + X, = -7
then
2 - 7 -3
A= s det(A)=-7 = 1det
{—3 J (#) A [—7 1} (A)
2 7
= ,det 7
a5 7|eeia)
det - det
det(A) -7 det(A) -7
Example 11
3X - 7 = 5§
Solve the system< x — y + z = 0
X + Yy =0
Exercises

System of Linear equations

1. Solve each system of the equations using matrices (row operations). If the system has
no solution, say that it is inconsistent.

X—y=6
a. <2x-32=16 b.
2y+z2=4

2X—-2y—-272=2
d.{ 2x+3y+z=2 e.
3x+2y=0

2x—-3y—z=0

g.43Xx+2y+2z=2 h.

X+5y+3z2=2

X—2y+3z=7

2X+y+z=4 C.

-3x+2y—-2z=-10

2x—-3y—-z=0

—-X+2y+2=5 f.

3x-4y-z=1

2X—-2y+32=06

4x-3y+2z=0 I.

—2X+3y-7z=1

2X+y—-32=0
—2X+2y+72=-7
3Xx—4y-3z2=7

—X+y+z=-1
—-X+2y-3z=-4
3Xx—2y-7z=0

3X—2y+22=06
7x-3y+2z=-1
2x—-3y+4z=0
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3X —z—2
Ty-z=g X+2y+z=1
. X—y+z=5
J.o92x—-y+z=1 K. q2x—y+2x=2 l.
3X+2y-2z2=0
8 3X+y+3x=3
4X+2y=—
3
2X+y—-2=4 2X+y-12= - =
n y 0 +y-2=6 o. X—y+2z=3
—X+y+3z=1 X—-y—-z=1 2X+y—27z=3
X—-y+z=0 X+2y—z=0 X—-y+3z=5
p. < 3x+y-52=0 g.13x+7y+3z=0 r. 4y—-47 =0
-X—-y+3z=0 —X+4y+2z=0 —X+2y+32=2
2. Find the parabola y = ax® + bx + c that passes through the points
(1.2),(-2,-7),(2,-3).
3. Find the function f (x)=ax’+bx*+cx+d for which
f(-3)=-112,f (-1)=-2, f (1)=4, f (2)=13.
4. Find the solution of the system using the inverse of matrix
2x+3y =12 b 5x+3y =16 c 4x+3y=2 q X+13y =4
| x+2y=7 | 2x+y=6 |2x+2y=4 x+11y =2
2X+3z=2 X+2y-2z=-1 2X+3z2=2
e. 3x—-2y=-8 f.93x+y+4z=17 g.{-3x+y+2z=-14
2X+y+3z=3 5x-3y+z2=2 4x-3y—-Tz=24
X-3y+2z=4 X+y+z=4 3x+y-2z=1
h.q2x-7y+3z=5 .2 2X—y—-2=2 Joi5Xx—y+4z=7
3X—-2y—-7z=-7 X+2y+3z=3 X-y+z=3
X+3y+2z=9 X+5y+7z2=12
K.y X+2y+2z=7 l. 3 2x+8y+12z=22
2X+6y+3z=17 3x+12y+20z =39

5. Solve each system using Cramer’s Rule if it is applicable
a{ 5x—y=13 b{3x—6y:24 C{3x—2y=4

2x+3y =12 5x+4y =12 6x—-4y=0
g 2X—4y=-2 . 3x-2y=0
|13x+2y=3 " |5x+10y =4
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X—y+z=-4 X+2y—-2=-3 X+4y-32=-8
f.92x-3y+4z=-15 g. 2X—4y+z2=-7 h. 43x—y+3z=12
OX+Yy—-2z=12 —2X+2y—-3z=4 X+y+6z=1
6. Solve
_+1:8 i__zo
X
a y b. 6 3
———=0 —+—=2
2y
7. Solve for x
x 1 1
X X X 1
a. =5 b. =-2 c.l4 3 2/=2
4 3 3 X
-1 2 5
2
d. |1 3 =-4x
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Chapter 4

Vectors

1 Rectangular Coordinates In 3-Space

1.1 Rectangular Coordinate Systems

The three coordinate axes form a three-dimensional z

rectangular or Cartesian coordinate system, and the point of

intersection of the coordinate axes is called the origin of the

coorrdinate system (see the figure.)

Each pair of coordinate axes determines a plane called a y
coordinate plane. These are referred to as the xy-plane, the xz-

plane, and the yz-plane. X

To each point P in 3-space we assign a triple numbers(a,b, c)
called the coordinates of P.

Z (0,0,c) (0,b,c)
(a,0,c P(ab
(0,0,0) (0, b;yo)
xx(a,0,0) (a,b,0)

1.2 Distance Formula In 3-Space

The distance from the origin to the point P(a,b,c)is found by d =+/a’ +b* +¢?

The students should derive this formula using the Theorem of Pythagoras.
More generally, the distance from any point P,(x,,¥;,Z,) to any other point

P,(X,,Y,.2,) is defined by

d :\/|X2 _X1|2 +|y2 _y1|2 +|Zz _Zl|2
or equivalently

d :\/(XZ - X1)2 +(Y, - yl)z +(z, - 21)2
Example 1
The distance between the point P, (4,-1,3) and the pointP,(2,3,-1) is

d=(4-2) +(-1-3) +(3+1) =36 =6
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The mid-point M of the line segment joining the point Pl(xl, Vi zl) and the point
P, (%, Y,,2,) s
M (30 +%) 3 (V. +Y,) 3 (2 +2,))

Example 2

The midpoint of the line segment joining the points (—1,3,—8) and the point (3,1,0)is
(£(-1+3),4(3+1),%(-8+0))=(1,2,-4)

2 Vectors

2.1 Vectors in Geometric View

Vectors can be represented geometrically as directed line segments or arrows in two or

three dimensional space; the direction of the arrow specifies the B

direction of the vector and the length of the arrow describes its

magnitude. The tail of the arrow is called the initial point of the

vector, and the tip of the arrow the terminal point. When A

discussing vectors, we shall refer to real numbers as scalars.

If the initial point of a vector V is A and the terminal point is B , we writeV = AB

Vectors having the same length and same direction are called equivalent. Since we want
a vector to be determined solely by its length and direction, equivalent vectors are
regarded as equal even though they may be located in different positions. If V.and ware
equivalent, we writev =w.

Definition

If vand ware any two vectors, then the sum V +Ww is the vector determined as
follows. Position the vector wso that its initial point coincides with the terminal
point of V.. The vector V +Wis represented by the arrow from the initial point of v
to the terminal point of w. It is obvious thatV + W=w+V .

"

The vector of length zero is called the zero vector and is denoted by 0 . We defined
0+V=v+0
Note that the direction of any zero vector is undefined.

&

If Vis any nonzero vector, then—V , the negative of v, is defined to be the vector having
the same magnitude asVv , but oppositely directed. This vector has

the property _ V
7+(-7)=0 L
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Definition
If vand ware any two vectors, then subtraction of wfrom V is defined by

Definition
If Vis a nonzero vector and k is a nonzero real number (scalar), then the product
kv is defined to be the vector whose length is |k| times the length of vV and whose

direction is the same as that of V if k >0and opposite to that of V if k <0. We
define

ki =0 if k=0o0rv=0

2.2 Vectors in Coordinate Systems
If Visa vector in 2-space with its initial point at the origin of a rectangular coordinate

system, then the coordinate (V,,V,)or (V;,V,,V;)of the terminal point are called
components of V and we write

V=(V,,V,) or V.=(v,V,,v;)
depending on whether the vector is in 2-space or in 3-space.

YA z

(vi:v2) (ViV5, V)

2.3 Equality of vectors

The vectors V =(v,,V, ) and

W= (W, W, ) in 2-space are V=W and v, =w,
equivalent (i.e.,v =w) if and only if

and vectors
V=(V,V,,Vy) and W=(w,w,,w,)
in 3-space are equivalent if and only if
v, =W,V, =W, and v, =W,
2.4 Arithmetic Operations on Vectors
If V=(v,,v,) and W= (w,,w, )are vectors in 2-space and k is any scalar, then

VEW=(v, £ W, v, +W,)
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kv = (kv,, kv, )
Similarly, if V =(v;,,,V,) and W= (w;,,w,,w, ) are vector in 3-space and k is any scalar,
then
VEW=(V, £ W, V, £ W, Vy W, )
k7 = (kv kv, kv, )
Example 1
If V=(1,-2)andW=(7,6), then findV+W,4V,—V, and V- W
Solution

V=(-v=- ( 2)=(-12)
V-w=(1,-2)-(7,6)=(1-7,—2-6)=(-6,-8)
Example 2
Let V=(—2,0,1)andW=(3,5,—4). Find V +W,—3V,—W and W— 2V
Solution
V+W=(-20,1)+(35-4)=(15-3)
—3vV =(6,0,-3)
—W=(-3,-5,4)
W—2V =(3,5-4)—(—4,0,2) =(7,5,-6)
2.5 Vectors with Initial Point Not at the Origin
If RP, is a vector in 2-space with initial point P,(x,, y;)and terminal point P, (X,,Y,)
;then
@:(Xz X, Y, _yl)
Similarly, if @is a vector in 3-space with initial point P, (X, y,,z )and terminal point

Pz(xz’Y21zz) 7
}/ipz(xzvyzvzz)
y |

|
L sV
»)

(The proof is exercise)
Example 3
In 2-space the vector with initial point P, (1,3)and terminal point P, (4,-2)is

PP, =(4-1-2-3)=(3,-5)
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and in 3-space the vector with initial point A(0,—2,5)and terminal point B(3,4,-1)is
AB =(3-0,4-(-2),-1-5)=(3,6,-6)

. 11— M Pz(xzvyzvzz)
PM =2 PP, r//»r//'

R (%Y 2)

2.6 Rules of Vector Arithmetic
For any vectors U,V and wand any scalars k and I, the following relationships hold:

i. U+V=vV+U

i, (U+V)+W=0+(V+W)
iii. G+0=0+0=0

iv. G+(-0)=0

v. k(ld)=(Kl)a

vi. k(U+V)=kd+kv

vii. (k+1)d=ka+1d

viii. 10 =0

2.7 Length of a Vector
Geometrically, the length of a vector Vv , also called the norm of V is the distance between

its initial and terminal points. The length (or norm) of ¥ is denoted by V] . It follows from

the distance formulas in 2-space and 3-space that the norm of a vector V =(v,,V, )in 2-

space is given by
ol =+

and the norm of a vector V =(V;,V,,V, ) in 3-space is given by
9] = +v; +vg
Example 4

Find the norm of V =(-2,3)and W=(2,3,6)
Solution

7= {-2)" 3 - V3
[W|=v22+32+6% =49 =7

Remark The length of vector kv is |k| times the length of V.. To express as an equation,

we can write as||kv] = k|||
This formula applies to both vectors in 2-space and 3-space.

2.8 Unit Vector
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It follows from the formula|kv]| =|k||[v] that if a nonzero vector ¥ is multiplied by 1/|[V|

(the reciprocal of its length), then the result is a vector of length 1 in the same direction a
V.. This process of multiplying v by 1/|[V]to obtain a vector of length 1 is called

normalizingV .

Example 5
A vector of length 1 in the direction of vector V =(3,4)is

1 1 1 34
—V=—roo0e=(3,4)==(3,4)=| =,=
Tl O R CORES
A vector of length 1 is called a unit vector. Of special importance are unit vectors that
run along the positive coordinate axes of a rectangular coordinate system.

In 2-space the unit vectors along x and y axes are denoted by i and ] respectively. In 3-
space the unit vectors along the x, y, and z-axes are i, j, and k . Thus,

i =(1,0), i=(01) in 2-space

i=(10,0), j=(0,10), k=(0,01) in3-space

Ya

Every vector V =(V,,V,)in 2-space is expressible uniquely in terms of i and j since we
can write
V=(v,V,)=(%,0)+(0,v,) =v;(L,0)+v, (0,1) =v,i +V,]
and similarly every vector V =(Vv,V,,V, ) in 3-space is expressible uniquely in terms of
i,j,and k
V=(V,,V,,V5) =V, (1,0,0)+V, (0,1,0)+Vv;(0,0,1) = v,i +V,] +V,k
Remark The notations (V,,V,,V;)and Vi +V, ] +V,k are interchangeable and we use both

of them. Similarly, the notations (v;,v,)and v;i +v, j are interchangeable.

Example 6:
(23)=27+3]  (0,0)=0i+0j=0 [2i -3]|=y2*+(-3)" =13
(2,-3,4)=27 3] +4k (0,3,0)=3j

|7 +27 -3K[| = 27 +2° +(-3)° =14
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3 Dot Product; Projections

3.1 Angle between Vectors

Let Gand V be two nonzero vectors in 2-space or 3-space, and assume these vectors have
been positioned so that their initial points coincide. By the angle between G and V we
shall mean the angle & determined by G and V that satisfiess0< 0 < r .

/ '
u o
W — M—q» 4_—f_olf> v
v v a v ( D
q 0

Definition
If Gand V are vectors in 2-space or 3-space and &is the angle between GandV , then the
dot product or Euclidean inner product U -V is defined by

-7 =[] cos

Example 1
The angle between vector t =(0,2)and V =(1,1)is45 . Thus,

0V = a7 cos & = /07 + 22 NIE + 12 cos 45" = zxﬁx%:z

3.2 Formular for the Dot Product
Let G =(u;,U,,uy)and V =(V,,V,,V; ) be two nonzero

vectors. If @is the angle between G andV, then the law
of cosines yields

—2 _ _ TN
[PQ|| =llalf + (v - 2J] o] cos & .
Since PQ =V —0 we can obtain / -
T 1. _ _L
|alfv]cose =§(||U||2 +[ v —al X

Q(Vl’V2’V3)

or
-9 = Jalf + ol ~[o -’
substituting
[ = uZ +uZ +u2, V] =v2 +v2+v2
and
V=] = (v, —uy)* + (v, —u,) + (v~ U, )’
we obtain, after simplifying
U-V=uVv, +UyV, +U,V,
If G=(u,u,) and V =(v,,v, )are two vectors in 2-space, then the formula is
U-v=uyv,+uy,
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From the definition, if G and V are nonzero vectors, then we can write
a-v

|aliv]
Example 2
Consider the vectorst =2i — j+k and V =i + j + 2K . Find G-V and determine the angle
@between UandVv .

cosf =

Solution
0-V =WV, +U,V, + UV, = 2x1+(-1)x1+1x2=3
o = /22 +(—1)2 +1° =6 and|[v] = v1* +1* + 2% =6
so that
cosébi:1
V66 2
Thus, 6 =7/3
Example 3

Find the angle between a diagonal of a cube and one of its edges.

Solution
Let k be the length of an angle and let introduce a
coordinate system as in the figure.

If we letd, =(k,0,0),d, =(0,k,0) and G, =(0,0,k)
then the vector d = U, +U, + Uy is a diagonal of a cube. The
angle @between d and the edge G, satisfies
g-d k¥ 1
elfd] ko B

Thus, 6= arccosi )

V3

Remark If U and vV are nonzero vectors in 2-space or 3-space and if @is the angle
between them, then
i. @ isacute ifand only if G-V >0
ii. @isobtuse if and only if U-V <0

cosf =

i 9:% if and only if G-V =0

3.3 Orthogonal Vectors

Perpendicular vectors are also called orthogonal vectors. From the remark above, two
nonzero vectors are orthogonal if and only if their dot product is zero. If we agree to
consider Gand V to be perpendicular when either or both of these vectors is0 . So, we
can state that two vectors U and V are orthogonal (perpendicular) if and only if

—

u-v=0.
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3.4 Direction Cosines

Of special interest are the angel «, £, and y that a vector G in
3-space makes with the vectorsi, j,and k . These are called
direction angles of G .The numbers cos«,cos f,and cosy
are called the direction cosines ofu .

The three direction cosines of a nonzero vector
0 =u,i +U,] +U.K in 3-space are X
cosa =u—j,cos,8 :u%,and cosy :u%
] ] Jal

The proof is considered exercise.

Example 4
Find the direction cosines of the vector G = 2i —4j + 4k and estimate the direction angles.
Solution

|o]=v4+16+16 =6

cosw—z—1 cosﬂ—_—A'—_—2 and cosy =
6 3 6 3 4

o
N &
w| N

Hence, o = arccos% P = arccos(—gj and y = arccosg

3.5 Properties of the Dot Product

3.6 Orthogonal Projections of Vectors
In many applications, it is of interest to decompose a vector U into a sum of to terms, one

parallel to a specified nonzero vectorb and the other perpendicular tob . If Gand b are
positioned so that their initial points coincide at a point Q, we may decompose the vector

i as follows(see the figure): Drop a perpendicular from the tip of G to the line through b
and construct the vector W, from Q to the foot of the perpendicular; next from the difference

W, = U —W,
The vector w, is parallel to b , the vector W, is perpendicular to b and
W, +W, =W, +(0—W, ) =0
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F

A

Q W,

[oxl 4

W, W, Q
U =W, + W,

oY
e
o

The vector W, is called the orthogonal projection of ton b or sometimes the vector
component of Galongb . It is denoted by proj.

The vector W, is called the vector component of U orthogonal to b . Since W, =0 —
this vector may be written asw, = U — proj.0

Formula for calculating

If Gand b are vectors in 2-space or 3-space and ifb = 0, then

. U-bo ﬁ -
proj.u = Wb (Vector component of Galongb )

U — proj.u=0-

b (Vector component of G orthogonal tob )

HbH
Example 3
Let 0 =27 — j+3k andb =47 — j + 2K . Find the vector component of Galongb and the

vector component of @ orthogonal tob .
Solution

U-b=2x4+(-1)(-1)+3x2=15
o] =42 +(-1)" +2° =21

Thus the vector component of Galong b is
i-b 5 15(

proj.u =—
R

and the vector component of G orthogonal to b is

U — proj U _(2| —j+3k) (?T—?]+§Ej
__Sp 27,4
7 7 7

A formula for the length of the vector component of Galong b may be obtained by
writing
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Joroia|-| 25 - =2
I
dl o
- BHZ HbH_W
o
Hence, H pI‘OjBUH :W

If &denotes the angle between Gandb , thend-b = ||U||H5H cos @, so we obtain

| proi;u] = uficos ]

0
DU N R
~[dflcosé] b
£<9§ﬂ
2
Example 4
Derive the formula for the distance D between the point P, (X,, Y,)and the line
ax+by+c=0.
Solution
From the figure, the distance D is equal to the length of y 4 A b
the orthogonal projection of the vector Q—Poon i ; thus, n=al+h
o o o7 - 2
il |
But Q%) R (%Y%)
QPO:(XO_Xllyo_)ﬁ) » X
QPo M= a(xo _X1)+b(y0 - yl)
|| = va* +b?
So

‘a(xo B X1)+b(yo B yl)‘

Ja’+b’
since the point Q(xl, yl) lies on the line, its coordinates satisfy the equation of the line, so
ax, +by, +c=0o0r c=—-ax, —hy,

D=
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Hence, we obtain

o |ax, + by, +c|

Ja® +b?

4 Cross Product
4.1 Cross Product
Definition
If U=(u,u,,us)and V =(v;,V,,V;)are vectors in 3-space, then the cross product G xV is
the vector defined by

- Ug . [u, U=
Qxv=|2 °li—" 7+ %k
V2 3 Vl V3 Vl V2
or
i J k
UxV=u U, U
Vl V2 V3
Example 1
Find 0 xV where 0 =(1,2,-2)and V =(3,0,1)
Solution
i j ok
B 2 2.1 -2, 1 2~ . _. -
uxv=1 2 -2/= I — ]+ k=21 -7]-6k
0 1 3 1 30
3 0 1
Theorem
If Gand V are vectors in 3-space, then
i T-(a0xV)=0 (T =V is orthogonal to @)
ii. v-(Uxv)=0 (T xV is orthogonal to V)
iii. ||U><\7||2 = ||U||2 ||\7||2 —(u -\7)2 (Lagrange’s identity)
The proof is an exercise.
Example 2

Prove that G =(1,2,-2)and V =(3,0,1) satisfy i. and ii.

Lagrange’s identity in the theorem states that||U><\7||2 = ||U||2 ||\7||2 —(U-\?)Z. If @denotes the

angle between GandV, thend -V =||d]||[] cos &, so we can write
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a9 =[al” [v] - o [¥]]" cos* 0

=l ¥ (1~ cos* &) ./
[ sin [ /

Since0< @<, it follows thatsind >0, so S ~
|6 = || [v]sin i
But [[V[sin @is the altitude of the parallelogram determined by GandV . Thus, the area A

of the parallelogram is given by
A = base x altitude =||]||[v]sin & = |t x V]|

Example 3
Find area A of the triangle that is determined by the points

P(2,2,0),P,(~10,2) and P,(0,4,3) (ans: 15/2)

Properties If Gand V are vectors in 3-space, then i xV =0 if and only if Gand V are
parallel vectors.
If G,V, and Ware any vectors in 3-space and k is any scalar, then

iv k(Ux )=(k )><\7=U><(k\7
v. ix0=0x0=0
vi. Ux0=0

Cross products of the unit vectors 7, j, and k are of special interest. For example,

i j ok
- . 0 0. (1 0. |1 O- -
ixj=1 0 0]= i — ]+ k =k
10 (00 01
010
Other cross products are listed below
ixj=k  jxk=i  Kxi=]
Jxi=-k kxj=—i  ixk=-]
ixi=0 jxj=0 kxk =0

4.2 Triple Scalar Products
If a=(a,a,,a,),b=(b,b,,b,) and ¢ =(c,,c,,c,) are vector in 3-space, then the number

a(bxe)

are called triple scalar product of a,b and €. It is calculated from the formula

oy
e

X
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B a a g
a-(bxc)=[b, b, b,
Cl C2 C3
This formula derives from
~ TTIZ b, b. |b bl. |b b,|-
a-(bxc)=a||b b, b =a i — i+ K
c c C C2 CS Cl C3 Cl CZ
1 2 3
a a g
b, b b b
— 2 3 _bl 3a2+b1 263=b1 b2 b3
CZ C3 Cl C3 Cl CZ C C C

=
N
w

Example 4
Calculate the triple scalar product & - ( b x 6) of the vectord = (BT ~2j —512),

b
6=(T+4j—412) and é=(3i+212)

Solution
3 2 -5
a-(Bxe)zl 4 —4|=49
0 3 2

Remark We can prove that é-(Bxé)zé-(éxﬁ):B-(éxé)

The triple scalar product é-(B X 6) has a useful geometric interpretation. If we assume

that the vector &,b, and € do not all lies in the same plane when they are positioned with

a common initial point, then the three vectors .
form adjacent sides of a parallelepiped. If the toxc

parallelogram determined by b and ¢ is regarded
as the base of the parallelepiped, then the area of

the base isHB x 6” , and the height h is the length

h= “ proj; a

of the orthogonal projection of @on b x¢ (see
the figure). Therefore by the formula for triple
scalar product, we have

It follows that the volume V of the parallelepiped is

V =area of base x height = HBxéH‘aéb xe)‘ :‘a’.(ﬁxﬁ)‘
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Remark It follows from this formula that
i (6 x 6) — 4V

Vectors

where + or — signs results depending on whether & makes an acute or obtuse

angle with b x¢ .

If the vector @ =(a,,a,,8,),b =(b,,b,,b,) and ¢ =(c,,c,, c, ) have the same initial point,

then they lie in a plane if and only if

A
a-(bxc)=|b, b, by[=0
Cl CZ C3
Exercises
1. Leti=(13),v=(21) andw=(4,-1). Find
a. U-w b. 7V +3W C. —W+V
e. 3V -8W f. 20— (0 +W)
2. Leti=2i+3],v=i andW=—i —2].Find
a. W-v b. 60 +4W C. —V—2W

e. 8(V+W)+20  f 3W—(V-W
1

a 0-W b. 7 + 3w C. —W+V
e. —3V —8W f. 20— (U +W)

4, LetU:(ST—E),\?:T—T+2E,W=3]. Find

a. w—v b. 60 + 4w C. -V -—-2wW
e. -8(V+wW)+20  f. 3W—(V-w)
In Exercises 5-8, compute the norm of v .
5. a.v=(34) b. V=—i+7] c. V=-3j
6. a v(1-1) b. V=(2,0) c. V=~/2i -
7. av=i+]j+k b. v=(-124)
8. a V=-3+2]+k b. v=(0,-3,0)
9. Letdi=(1,-3), V(1,1) andW=(2,—4). Find

o
N
—
w
<l
+
<l
~

o
SN
—
w
<
+
<l
SN
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10.

11.

12.

13.

14.
15.

16.
17.
18.

19.

20.

21.
22,
23.
24,
25.

2. Ju+v] b. [} + 9] c. ||-2a]+2[v]
d. |30 -5V + |

Letld =27 —5],V=21,W=3 +4] . Find
a. v+ b. ]+ c. |-3af+ 4]
1 1
d. lo-v-w 6. —— W f. = w
fo-v = T T
Let G =(2,-1,0),V=(0,1,-1). Find
a. |a+v] b. [+ |v] c. [lsal d. |20 -3v|
Let G=i-3]+2k,V=i+] and W=2i +2] -4k . Find
a. |a+v] b. [ +[v] c. |-2al|+2|v]
d. |30 -5V + | e. 1w £ 2w
[ [

Let G=(-11),v=(0,1) andW=(3,4). Find the vector X that satisfies

Letd =(1,3),V=(2,1),W=(3,4). Find the vector X that satisfies 20—V + X = 7X + W.
Find 0 and V if G+V =(2,—-3) and3d+2vV =(-1,2).

Find G and V if G+2V =3 +k and30 -V =i + j +k.

Let G=2i —jandV =4i +27]. Find scalarsc, and c,such thatc,i +c,v =—4] .

Letd =(1,—3)andV =(-2,6). Show that there do not exist scalars c,and c,such that

Letd =(1,0,1),v =(3,2,0)andw=(0,1,1). Find scalarsc,,c,, and c,such that
cU+c,V+cW=(-115).

Letd =i —J,V=3i +k andw=4i — J +Kk . Show that there do not exist scalarsc,, c,
and c, suchn thatc,i + ¢,V +c,W=2i + ] -k .

LetV = 4i —3] . Find all scalarsk such that |kv|=3.

Find a unit vector having the same direction as —i +47] .
Find a unit vector having the same direction as3i —47] .
Find a unit vector having the same direction as2i — j + 2k .

Find a unit vector having the same director as the vector from the point A(—3, 2) to

the point B(1,-1).
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26.

27.

28.
29.

30.

31.
32.

33.

34.
35.

36.

37.

38.

39.

40.

Find a unit vector having the same direction as the vector from the point A(—l,O, 2)
to the pointB(3,1,1).

Find a vector having the same direction as the vectorV = —2i + 3] but with three time
the length of v
Find a vector oppositely directed tov = (3,—4) but with halfn of length of v .

Find a vector with the same directed to V = —3i + 4 + k but with twice the length of v .

Find 0.V
a. U=i+2j,V=6i-8j b. U=(-7,-3),v=(0,1)
c. U=i-3j+7k,v=8i—-2j—-2k d. U:(—3,1,2),\7:(4,2,—5)

In each part of exercise 30, find the cosine of the angle & betweend and v .
Determine whether G andV make an acute angle, an obtuse angle, or are orthogonal .

a. U=7i +3]+5k, V=-8 +8] +2k b.U=6i + ] +3k,V =4i —6k
c. 0=(111),v=(-1,0,0) d. G=(4,16),v=(-3,0,2)
Find the orthogonal projection of Gona.
a. U=2i+],a=-3 +2] b. 0=(2,6),a=(-9,3)

0=-7i +]+3Kk,a="50 +k d. G=(0,0,1),a=(8,3,4).

In each part of exercise 33, find the vector component of G orthogonal to &.
Find |proj,d]
a .0=(4,5),a=@1-2)

ali=2i-],d=3+4
P 0=(4,-17),da=(2.3-6)

b
d

a G(7v+w) b |(@w)w| c d@|(vw) d. (Ja]v)w
Show that A(2, -1,1),B(3,2,-1)andC(7,0,—-2)are vertices of a right triangle. At
which vertex is the right angle?
Leta=ki + jandb = 4i +3] . Find k so that
a. aandb are orthogonal.
b. The angle between aand b isz/4
c. The angle between aandb is 7/6

d. dandb are parallel.
Find the direction cosines of U and estimate the direction angles to the nearest degree.

a u=i+]j-k b.G=2i —2j+k
C.0=3 —2j-6k d. 0 =3 —4k
Calculate the distance between the point and the line.
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a. 3x+4y+7=0;(1,-2) b. y=-2x+1;(-3,5) C. 2x+y=8;(2,6)
41. Given the points A(1,1,0),B(-2,3,-4)and P(-3,1,2)
a. find”projAEAﬁu

b. Use the Pythagorean Theorem and the result of part (a) to find the distance from P
to the line through A and B.

42.Find axb
d=(12,-3),b=(-412) ba=3+2j-k,b=-71-37+K
ca=(0,1,—2),6=(3,o,—4) da=4i+k b=2i -]
43. Let U =(2,-1,3),v=(0,1,7) and W=(1,4,5). Find

e.(UxV)x(VxW) f.(VxW)x(UxV)
44. Find a vector orthogonal to both Gand v .
a.U=-71 +3]+k, V=27 +4k Db.0=(-1-1-1),V=(2,0,2)
45. Find the area of the parallelogram determined by the vectors G and v .

ali=i-]+2k,v=3]+k b.U=2i +3],Vv=—i +2] -2k
46. Find the area of the triangle having vertices P, Q, and R.
a.P(1,5-2),Q(0,0, O),R(3,5,1) b.P(2,0,-3),Q(1,4,5),R(7,2,9)

47.Finda(6 )

a. (
b.
C.

J
48. Find the volume of th pa rallelepiped with sides d,b,and ¢
b.d=3i + j+2k,b =47 +5]+k,¢ =T+2T+4IZ
49. Consider the parallelepiped with sides

a= 3|+2]+k
b—l+j+2k
C—I+3j+3k

a. Find the volume
b. Find the area of the face determined by adand b .

54



Lecture Note complex numbers

Chapter 5

Complex Numbers

1 The Construction of Complex Numbers
The complex number system will be defined as an extension of the real number system,
just as the real number system is an extension of the rational number system. For

example, the quadratic equation x* = 2 has no rational solution, and so a larger system,
called the real number system, is introduced, in which this equation does have a solution.

The symbol J2 is defined as the positive real number whose square is 2.

However, the real number system is not sufficient to solve all quadratic equations. The

equation x> =—1has no real solution, because the square of any real number can never be
negative. We therefore introduce the symbol i to stand for a new kind of number whose

square isx* =—1; that is, i® =—1. Therefore, we construct all the complex numbers as
follows.

A complex number is an expression of the forma+bi, where a and b are real numbers.
The complex number set, which is denoted by the symbol C, is {a+bi|a,b e R}

If z=a+biissuchacomplex number, then a+bi is said to be the standard form of z.
The real number a is called the real part of z and is denoted by Re(z) . The real number

b is called the imaginary part of z and is denoted by Im(z).

For example, z=3+4iis a complex number whose real part is 3 and whose imaginary
part is 4. If the imaginary part of a complex number is zero, we equate that complex
number with its real part, so that —6+ Oiwould be equated with the real number—6.
Hence every real number is also a complex number. A complex number whose real part
is zero, such as 0+5iis called purely imaginary and is usually denoted by just5i .

2 Operations on Complex Numbers
Let z and z, be two complex numbers such thatz, =a, +bji and z, =a, +b,i. Then

i. Addition: z, +z, =(a, +bi)+(a, +b,i)=(a, +a,)+(b, +b,)i
ii. Subtraction: z, -z, =(a, +bji)—(a, +bi)=(a,—a,)+(b —b,)i
iii. Multiplication:
z,x2, =(a, +hi)x(a, +h,i)
=aa, +ab,i+bjia, +bh,i’
:(aiaz_b1b2)+(alb2+a2b1)i
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iv. Division:
z, a+hi
z, a,+b,i

_ a1+b1i _az_bzi
a,+b,i a,—h,i

(a1a2 +b1b2)+(azb1 _a1b2)i

a +b’
— a,a, +b1b2 + a2b1 _a1b2 i
a +b’ a’ +b?
Example 1
If z=4+7iandw=-3+1,findz+w,z—w and zw.
Solution

z+wW=(4+7i)+(-3+i)
=(4-3)+(7+1)i
=1+38i

z-wW=(4+7i)—(-3+i)
=(4+3)+(7-1)i
=7+6i

ZW=(4+7i)(-3+i)

=4(-3)+4i+7i(-3)+7i*

=-12+4i-21i-7

=-19-17i
Example 2
Find the standard form and the real and imaginary parts of (2 +3i)2.
Solution

(2+3i)" = 4+12i +9i
=-5+12i
and hence the real part is -5 and the imaginary part is 12.
Example 3
Find the real and imaginary parts of z +1 ifz=(2+i)/(1-i).(Ans: Re :%, Im :%)
4

v. Equality of complex numbers: If a, b, c and d are real numbers, then
a+bi=c+diifandonlyif a=candb=d

Example 4
Find the solutions to the equation z* = —4.
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Solution
Let z=a+biwherea,be R, so that
7’ :(a+bi)2
=a’ + 2abi —b?
=(a”-b’)+2abi
Now if 22 = -4,
(a* ~b)+ 2abi =—4+0i
implying that
a’-b*=-4(1)
{Zab =0(2)
Equation(Z) implies that eithera=0 or b=0. Ifa = 0 ,the first equation gives
us—b* =—4,and sob=+2. Ifb =0, the first equation gives usa® = —4, which has no

solutions for real a.
Hence, the only solutions are a=0andb =42. Therefore, z=2iand z=-2iare all the

solutions to the equation z° = —4.

3 The Complex Plane
Since each complex number z = a +bi is determined by two real numbers a and b, we can
represent this complex number geometrically as the point in the plane with Cartesian

coordinates(a,b). The plane in this representation is called complex plane. Each real

number a is also the complex number a -+ 0i that corresponds to a point(a,0)on the x-

axis. Therefore the x-axis is called the real axis. A purely imaginary number
z =0+ bi corresponds to a point on y-axis; therefore, the y-axis is called the imaginary
axis.

Example 1
Plot the following complex numbers in the complex plane:

2, =4+3i,2,=-2+4i,2,=3,2, =4i,2, =-5-1,2, =-2i
Solution
These complex numbers are represented by the
points(4,3),(-2,4),(3,0),(0,4),(-5,—1),and (0,-2).

Imaginary axis
Z,=-2+4ie z,=4i
oL =4+3i
SRR EEPHED S ek
. 2,=3
Z = 7, = —2i
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The complex number z = a +bi can also be represented as a vector from the origin to the
point coordinates(a, b). The complex numbers in the above example are represented as

vectors in the figure below.

Imaginary axis

z,=-2+4i
z, =4+3i

Real axis

T »

If a+biis any complex number, then (a+bi)(a—bi)=a’+b*which is always a real
number. This relationship leads to the following definition.

The complex conjugate of z=a+biiszZ=a-hi.

Geometrically, the complex conjugate 7 is the reflection of z in the real axis. If z is real,
then z lies on the real axis and its conjugate, Z , is equal to z.

Im
Ar z
0 »Re
ya
Example 2
Ifz, =-2+3iandz, =0-5i. FindZ,Z,,27 and 2,7, .
Solution

We have 7, =-2-3i and Z, = 0+5i and therefore
2,7, =(-2+3i)(-2-3i)=4+9=13
2,7, =(0—-5i)(0+5i)=25

Properties of The Complex Conjugate
If z=a+biand z, and z,are complex number, then

i. zZ =a’+b?, which is always real and non-negative.
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Il

N|
=
@

nd only if z is a real number

Since the number zz = a* +b?is real and non-negative, it has a non-negative real square
rootva’ +b? . This number is the distance from the origin to the point (a,b)and equals

the length of the vector(a, b). It is called the modulus or absolute value of z and is
denoted by|z|.

The modulus or absolute value of a+biis |a+bi| =+/a’+b?

Properties of the Modulus
If z,z, and z, are complex numbers, then

i. |z|=0ifandonlyif z=0
ii. |z=[z]
iii. z=|2[
iv. |2,7,|=|z||z,]
We can now find the reciprocal of the non-zero complex number as follows. Start with
77 :|z|2

and divide by the non-zero real number |z|2 to obtain

(&)

Since 2271 =1, then 21 =~

i

The inverse or reciprocal of the non-zero complex number z =a+Dbi s

2,1:1: a—bi __a b i
|z|2 a’+b*> a’+b? a’+b?
Example 3
Ifz=1+2i, express z"in standard form
Solution
4 1-21 1
7T =—==—=i
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4 Further Properties of Complex Numbers
Properties of Complex Numbers
If z,,z, and z,are complex numbers, then
i 2,+(z,+12,)=(z,+12,)+z, (Associative Law of Addition)
i.  z,+2,=12,+z(Commutative Law of Addition)
iii. There is a complex number Osuch that, for all complex numbers z,
z2+0=z
iv. For each complex number z, there is a negative —z such that z +(—z) =0
V. z,(2,2;)=(2,2,) z, (Associative Law of Multiplication)
vi. 7z, =1,z, (Commutative Law of Multiplication)

vii. There is a unit 1 such that z1=z for all complex numbers z
viii. Each non-zero complex number z has an inverse z*such that zz™* =1
iX. 7,(z,+12;) =122, +2,2,(Distributive Law)

Triangle Inequality
For any complex numbers z,,and z, |z, + 7,| <|z,|+|z,|

Proof:

v

0]

Let the vector OP, and OP, represent the complex numbers z, and z, respectively. Then

z, +2,is represented by OR, the diagonal from the origin in the parallelogram OPRREP,.
Since sum of the two sides of the triangle OF,R is greater than or equal to the third side

OR] <[o]+ R

Now‘ﬁ‘ :‘O—Pz‘=|zz| , 50 that|z, +z,| <|z,| +|z,|.

5 Polar Coordinates

A point in the plane can be located by using the familiar Rectangular Cartesian
coordinate system and specifying its coordinates x and y . There is an alternative
coordinate system that will be useful in dealing with multiplication and power of
complex numbers. To use the polar coordinate system select a fixed point, O, in the
plane, called the pole or origin and a fixed horizontal ray Ox, called the polar axis. The

position of a point P in the plane is given by the ordered pair of real numbers(r,8),
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called its polar coordinates, where |r|is the distance from O to P and & is the angle, in
radians, that OP makes with the polar axis.
P(r,0)

adius vector

Pole Polar axis

The vector OP is called the radius vector, @is called the vectorial angle. By convention,
the polar axis will always be selected in the direction of positive x-axis, and the angle

@ will be positive if measured in a counterclockwise direction fromOx , and negative if
measured clockwise. Normally r is taken to be non-negative.

Example 1
Plot the points with these polar coordinates[B, %)[2%)(50) [3,—%) and (3%)

Example 2
Plot, in separate diagrams, the points with the following polar coordinates

255 ) e

Occasionally it is useful to allow r to be negative. In that case the point (r, 0) lies in the
quadrant diagonally opposite to(—r,8).

A

v

(-1.9)

Given polar coordinates of a point, it is easy to calculate its Cartesian coordinates.
Let (r,&)be polar coordinates of the point P, and let (x, y)be its Cartesian coordinates.

Then, in the right-angled triangle, coseziand sinezl.
r

r
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yA
P(r,0)
()
r |
0 N
0 X X

6 Complex Numbers in Other Forms
The complex number z = x + yi , written in standard form, can be represented by the point

in the complex plane with Cartesian coordinates(x, y). Many problems in complex

numbers, such as finding powers and roots, can be solved more easily by using the polar
form of a complex number.

Im#$ .
Let z=x+ yi be a complex number, and let(r,8) =X
where r >0, be polar coordinates of the point P :(005‘9“5'”9)
representing z. T_hen x=rcosd andy=rsindand .

Z=X+YVYi |
=rcos@+risinéd
=r(cosf+isino) 0 ;

We often abbreviate cosé@+isindby cisé O X Re

Polar form of a complex Number
z=r(cos@+ising) or
z=rcisé, wherer >0

The non-negative number r = \/x* + y* is the modulus of the complex number z ; that is,
r= |z| . The angle &, measured in radians, is called argument of z and is often

abbreviated asarg z. The angle &is not determined uniquely, but is defined only up to a
multiple of 2z . In general,arg z = 8 + 2k for any integer k.

The principle value of the argument (sometimes called the principle argument) is the
unique value of the argument that is in the range —z <argz < and is denoted by Arg z .

Note that the inequalities at either ends of the range tell that a negative real number will
have a principle value of argument of Argz = .
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Hence, given a complex number z = x+ yi, then its modulus is found by

r=|z|=yx*+y?

and its argument can be found by

tan @ _Y or = arctanl
X X
To help determine the correct argument, we should first plot the numbers in the complex

plane.

Example 1
Determine the modulus and argument of each of the following complex numbers.

(2).3+i2 (). 11, (c). —1+i (d). —/6—iv2

Solution
VA (3,2) VA
0 i > . >
© X oNg 1 X
(1)
(@) (b)
(_1’1) va yA
B TATE. P
(~E2)
© @

@. [3+i2=v3+22 =413

Arg(3+i2)=arctan (%)

(b).  [-i]=y2+(-1)" =2

Arg(1-i)=—tan™ Gj = —%

©). |1+i[=y(-1) +22 =2
Arg(-1+i) :n—tanl(%j = ;;_£:3_”

4 4
@.  |[6-ivZ=6+2=1B
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Arg (—\/E—i\/i)z —[ﬁ—tan‘l

6
Z—(ﬂ—tan_l\/I
3
:—(ﬂ'——

Complex Conjugate in Polar Form

If z=rcisd, then z =rcis(-0)

Complex Multiplication in Polar form
If z, =r,cis6, andz, =r,Cisd,, then z,z, = r,r,Cis(6,+6,)

Proof is an exercise.

Complex Division in Polar form

: : z, r .
If z, =r,cisf, andz, =r,Ccisd,, andr, =0, then -+ =—2Lcis(6, - 6,)

Proof is an exercise.
Example 2

complex numbers

. 3 .2 z
If z, = 2CIS§ and z, =5ms§calculate z,z,and— . Make sure that all arguments are
z

the principle ones.

Euler’s Formula
e =cos@+ising

Any complex number can be written as

z=r(cos@+ising)=rcisd =re"

The expression re'is called the exponential form of the complex number z.

Note that e?? =1ande" =-1.

Letz, =re” and z, =r,e, then

i0, i(6,+6,)

H i6,
i. 7z, =rre%e” =rre

i0,
i i_ ne- :iei(ergz)

i0,

z, e’
Example 3
Express z =—2—2i in exponential form.
Solution
r=|o|=aT4 =22

64



Lecture Note complex numbers

3
O=Argz=——
9 4

3
Then, in polar form we have z = 22 4.
Example 4

2ir iz
If z,=2e 3 andz, =5e* . Find zlzz,i, and z,*
Z2
7 De Moivre’s Theorem
De Moivre’s Theorem
For any positive integer n, (rcisH)n =r"cisnd

Proof can be made by induction.

Example 1
Write z = (1+ i)20 in standard form.
Solution

In polar form, 1+i= \/Ecis%; therefore,
20 20
Z= (ﬁcis%} = (ﬁ) cis(on”] =2"%Cisz = -1024

De Moivre’s Theorem In Exponential Form
When the complex number is in exponential form, then the theorem is as follows

(re” )n =r"e", for n any positive integer.
Example 2
If z=2e? find z°in standard form.
Solution

6ir

7° =2% 3 =64e%" =64

De Moivre’s Theorem for Negative Integers
(rcis@) " =r"cis(-nd)

Proof:
If n is a positive integer, then
(rcisg) " = 1 = 1 —=r"cis(-no)
(rcisg)  r"(ciso)
Example 3

l \/§ -13
Express [_E_7i] in standard form

Solution
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8 Roots of Complex Numbers
In this section we will use de Moivre’s Theorem to find all the square roots, cubic roots,

fourth roots, etc. of any real or complex number. That is we will find the nth roots of z,
1

i.e z" where nis an non-zero integer.

Let w=2z""then z=w"
Using de Moivre’s Theorem, we obtain
w" =R"(cosng+isinng)where |w| =R and argw = ¢
and since
z=r(cos@+isin@)with |z|=r and argz =0
then by equating z =w", we obtain
rcosd =R"cosng and rsin@ = R"sinng

and hence,
1

r=R"=R=r"
sin@d=sinn
4 :n¢:6’+27rk,keZor¢:g+2—ﬂk, keZ
c0s @ = cosng n n

Therefore, if z =rcis@ then all its complex nth roots is
2 =¥ {cos(g+%]+isin(g+%ﬂfor k=0,1..n-1
n n n n
or

1
7" = Q/Fcis(ngZij,for k=0,1,..,n-1
n n

Example
Find all square roots and cubic roots of z = —%-Fi%

Solution

z can be writtenas z =2 2cis?’Tﬁ. Then the square roots are

1 1 . .
z2 :(2‘“)2cis(3§+ﬂkj,fork:0,1 S/ 37

1

:2_4cis[3§+zkj,fork:0,l \ ,

o3
If k=0, then z,=2 4cis?
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1 1 1
If k=1, then z, =2 4Ci5(3§+ﬂ'j=2 4cis%:z 4cis(—%)

The cubic roots are

2”3:r]/3cis(g+%j,k:0,l,2
3 3

complex numbers

:2”60is(%+2—73[k],k:0,1,2 (k =1p %”

Ifk =0, then zO:Z’Vecis%

Ifk =1, then z, = 2”/6cisﬁ
12

Ifk =1, then ZZ:Z‘VGCislg—”=2‘V6cis 19—7[_2;; __pve(_57
12 12 12

Example 2
Solve the equation z* + 242 = 24/2i =0

Exercises

1. Find the real and imaginary parts of the complex numbers

a. 6+11 b.-7i c.14 d. -1-2i
2. Compute z+wand zw.
a. z=2+3i,w=1+i b. z=2+i,w=2-i

d. z=—-1+5i,w=7-11 e z=+/5,w=2-6i
f.z=-1+3I,w=—4-2i

3. Express the complex number in standard form
a (1+i)  b.(2+4i)+(7-i) c(-5i)
e. (2-i) +(1+20)" 1 (V7 -+3i) (V7 +3i)

4. If z=a+ib, whenis (2-3i)zreal?

If z=a-+bi, whenis (-4+5i)zpurely imaginary?

d.(~4+i)(~4-i)

C. z=4+5i,w=i.

6. Plot the complex numbers 2+ 3i,5—i,—3—4i,and —3i in the complex plane as

points.
7. State the complex conjugate and modulus of each complex number.
a.2+09i b—i ¢33 di(5+4i) e2-3JTi

8. If z=3+5i, plot z,iz,i’z,i’z,and i*z on the same diagram.

v
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10.

11.

12.

13.

13.

14.

15.

16.
17.

18.

19.
20.

21.
22.

If z=1++/3i, plot z,z2,2iz,and —iz on the same diagram.
Express in standard form

2+ p L+2i o A+si d. (2+i)(1+2i)
3—i 1-2i 7i 3-2i

If z=1-3i, write in standard form.
a.z* b.(z)" c.z? d.(z)"
If z, =5+1,z, =3—1,and z; =—4+3i, express the following in standard form
a. (z2,)z b. 7(z,z,) c.z(z,+2) d.zz,+727, ez+7Z
f. z,+1, 9.7,+7, h.zz, i.2,2,
Solve for z
a.(2-3i)z=5 b.(1-2i)z+3=-i

a. Evaluate i"for n=0,1,2,...,10
b. Evaluate i*",i*"*,i*""? i*"*® i*"**for all positive integer n.
If z,z,,and z, are complex numbers, prove each statement

a.z b.z,+2,=7+7, c.|7=|z|

d.z=7Zifandonlyif zeR e.|lz[=0ifandonlyif z=0 f.z+7=2Re(z)

Prove that Re(z) :%and Im(z) :%

Find all complex numbers z such that z° =7 .
Convert the complex numbers to polar form

a. 1++/3i b. 2i c.—2+/2 - 24/2i d—2_ e.(—\/§—i)
1++/3i

Convert the complex numbers to standard form

a. cos%ﬂsin% b.4cis77” c.3ci35—ﬂ d.10(cos 7z +isin7x)

1. ( 7[]
e.—CIS| ——
2 3

Write each of the complex numbers in exercise 17 in exponential form.
Express each quantity as a complex number in polar form

a. (1-1)(1+3i) b.(Zeig](Eezgi} o 22 d.(~6+6v3i)

s 5] -(35) &

If z=rcis@ =0, prove that £ _cos? §—sin? 6 2isinOcos 6 .
z

If @is not an odd multiple of 7, prove that
1+cos@+ising

1+cos@—isin@

=cos@+isind
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23. Use Euler’s formula to prove that

i9 | -0 i -0
a.coseze e b.sin9=e 2_e
[
24. Use de Moivre’s Theorem to express each complex number in standard form
3 8
a.(ZciszJ b.(cos£+isin£j c.(1-i)"
4 12 12
\3 27i 7 9
d. ﬂ+ﬂ ele 3 f.(i+ii]
2 2 22
~1+i)° (-1-i)* :
T s (L)
(+3-i) (V2++/2i)

25. Ifz = cis%, plot z,z%,7%,...,2°in the complex plane.

26. Using de Moivres’s Theorem, prove each statement.

a.c0s26 = 2c0s” 6 -1 sin20 =2sindcosé

b.cos46 =8cos* 0—8cos® 6+1, sin46 = 4sin O cosd(1-2sin’ 0)
27. Find the value in standard form.

a.(1+i)(=1+i)" (-1-i)’ (2-i)’

b.(1+i)+(—1+i)2 +(—1—i)3 +(1—i)4
28. Find all the roots in polar form and illustrate each geometrically.

a. the cube roots of 8 b. the fourth roots of i
c. the squre roots of —i d. the fifth roots of 32ci55§
e. the sixth roots of 1 f. the fifth roots —32

29. Solve the equations and express your answers in standard form
a.z*-16=0 b.z°=64i c.z'+1=0 d.z'+8-8/3i=0
e.z’—(2+2i)z+i=0 f.22+22-3i=0

30. Use the complex exponential to solve the equations; leave your answers in

exponential form.

azir g b.z°—243=0

V2 42
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